BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34591306)

  • 1. Controlling Pore Size of Electrospun Vascular Grafts by Electrospraying of Poly(Ethylene Oxide) Microparticles.
    Rafique M; Midgley AC; Wei T; Wang L; Kong D; Wang K
    Methods Mol Biol; 2022; 2375():153-164. PubMed ID: 34591306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.
    Wang K; Zhu M; Li T; Zheng W; Li L; Xu M; Zhao Q; Kong D; Wang L
    J Biomed Nanotechnol; 2014 Aug; 10(8):1588-98. PubMed ID: 25016658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multicompartment vascular implant of electrospun wintergreen oil/ polycaprolactone fibers coated with poly(ethylene oxide).
    Eldurini S; Abd El-Hady BM; Shafaa MW; Gad AAM; Tolba E
    Biomed J; 2021 Oct; 44(5):589-597. PubMed ID: 32389823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model.
    Wang K; Zheng W; Pan Y; Ma S; Guan Y; Liu R; Zhu M; Zhou X; Zhang J; Zhao Q; Zhu Y; Wang L; Kong D
    Macromol Biosci; 2016 Apr; 16(4):608-18. PubMed ID: 26756321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles.
    Hodge J; Quint C
    J Biomed Mater Res A; 2019 Sep; 107(9):1954-1964. PubMed ID: 31033146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber.
    Hodge JG; Quint C
    J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications.
    Semitela Â; Girão AF; Fernandes C; Ramalho G; Bdikin I; Completo A; Marques PA
    J Biomater Appl; 2020; 35(4-5):471-484. PubMed ID: 32635814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model.
    Matsuzaki Y; Iwaki R; Reinhardt JW; Chang YC; Miyamoto S; Kelly J; Zbinden J; Blum K; Mirhaidari G; Ulziibayar A; Shoji T; Breuer CK; Shinoka T
    Acta Biomater; 2020 Oct; 115():176-184. PubMed ID: 32822820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration.
    Wang K; Xu M; Zhu M; Su H; Wang H; Kong D; Wang L
    J Biomed Mater Res A; 2013 Dec; 101(12):3474-81. PubMed ID: 23606405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The preparation and characterization of highly aligned poly(epsilon-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold.
    Nien YH; Wang JY; Tsai YS
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4703-7. PubMed ID: 23901493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun vein grafts with high cell infiltration for vascular tissue engineering.
    Tan Z; Gao X; Liu T; Yang Y; Zhong J; Tong C; Tan Y
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():407-415. PubMed ID: 28887992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating and increasing nano-scaled pore formation on electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers.
    Lyu LX; Huang NP; Yang Y
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1155-69. PubMed ID: 27126176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration.
    Zhou F; Jia X; Yang Y; Yang Q; Gao C; Hu S; Zhao Y; Fan Y; Yuan X
    Acta Biomater; 2016 Oct; 43():303-313. PubMed ID: 27477849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model.
    Fang Z; Xiao Y; Geng X; Jia L; Xing Y; Ye L; Gu Y; Zhang AY; Feng ZG
    Biomater Adv; 2022 Feb; 133():112628. PubMed ID: 35527159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo.
    Zhao L; Li X; Yang L; Sun L; Mu S; Zong H; Li Q; Wang F; Song S; Yang C; Zhao C; Chen H; Zhang R; Wang S; Dong Y; Zhang Q
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111441. PubMed ID: 33255034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.