BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34591613)

  • 1. Interpretation of cancer mutations using a multiscale map of protein systems.
    Zheng F; Kelly MR; Ramms DJ; Heintschel ML; Tao K; Tutuncuoglu B; Lee JJ; Ono K; Foussard H; Chen M; Herrington KA; Silva E; Liu SN; Chen J; Churas C; Wilson N; Kratz A; Pillich RT; Patel DN; Park J; Kuenzi B; Yu MK; Licon K; Pratt D; Kreisberg JF; Kim M; Swaney DL; Nan X; Fraley SI; Gutkind JS; Krogan NJ; Ideker T
    Science; 2021 Oct; 374(6563):eabf3067. PubMed ID: 34591613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive assessment of cancer missense mutation clustering in protein structures.
    Kamburov A; Lawrence MS; Polak P; Leshchiner I; Lage K; Golub TR; Lander ES; Getz G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5486-95. PubMed ID: 26392535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.
    Latysheva NS; Oates ME; Maddox L; Flock T; Gough J; Buljan M; Weatheritt RJ; Babu MM
    Mol Cell; 2016 Aug; 63(4):579-592. PubMed ID: 27540857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of synthetic lethal pairs in biological systems through network information centrality.
    Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2013 Aug; 9(8):2163-7. PubMed ID: 23728082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer.
    Ruffalo M; Koyutürk M; Sharan R
    PLoS Comput Biol; 2015 Dec; 11(12):e1004595. PubMed ID: 26683094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-structure-guided discovery of functional mutations across 19 cancer types.
    Niu B; Scott AD; Sengupta S; Bailey MH; Batra P; Ning J; Wyczalkowski MA; Liang WW; Zhang Q; McLellan MD; Sun SQ; Tripathi P; Lou C; Ye K; Mashl RJ; Wallis J; Wendl MC; Chen F; Ding L
    Nat Genet; 2016 Aug; 48(8):827-37. PubMed ID: 27294619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering distinct functional modules of specific cancer types using protein-protein interaction networks.
    Shen R; Wang X; Guda C
    Biomed Res Int; 2015; 2015():146365. PubMed ID: 26495282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying mutation specific cancer pathways using a structurally resolved protein interaction network.
    Engin HB; Hofree M; Carter H
    Pac Symp Biocomput; 2015; 20():84-95. PubMed ID: 25592571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein interaction landscape of breast cancer.
    Kim M; Park J; Bouhaddou M; Kim K; Rojc A; Modak M; Soucheray M; McGregor MJ; O'Leary P; Wolf D; Stevenson E; Foo TK; Mitchell D; Herrington KA; Muñoz DP; Tutuncuoglu B; Chen KH; Zheng F; Kreisberg JF; Diolaiti ME; Gordan JD; Coppé JP; Swaney DL; Xia B; van 't Veer L; Ashworth A; Ideker T; Krogan NJ
    Science; 2021 Oct; 374(6563):eabf3066. PubMed ID: 34591612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mutational landscape of phosphorylation signaling in cancer.
    Reimand J; Wagih O; Bader GD
    Sci Rep; 2013 Oct; 3():2651. PubMed ID: 24089029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circulating mutational portrait of cancer: manifestation of aggressive clonal events in both early and late stages.
    Yang M; Topaloglu U; Petty WJ; Pagni M; Foley KL; Grant SC; Robinson M; Bitting RL; Thomas A; Alistar AT; Desnoyers RJ; Goodman M; Albright C; Porosnicu M; Vatca M; Qasem SA; DeYoung B; Kytola V; Nykter M; Chen K; Levine EA; Staren ED; D'Agostino RB; Petro RM; Blackstock W; Powell BL; Abraham E; Pasche B; Zhang W
    J Hematol Oncol; 2017 May; 10(1):100. PubMed ID: 28472989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.
    Hashemi S; Nowzari Dalini A; Jalali A; Banaei-Moghaddam AM; Razaghi-Moghadam Z
    BMC Bioinformatics; 2017 Aug; 18(1):370. PubMed ID: 28814324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracting significant sample-specific cancer mutations using their protein interactions.
    Badea L
    Pac Symp Biocomput; 2014; ():15-26. PubMed ID: 24297530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes.
    Galka-Marciniak P; Urbanek-Trzeciak MO; Nawrocka PM; Kozlowski P
    Nucleic Acids Res; 2021 Jan; 49(2):601-620. PubMed ID: 33406242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic model of the human protein-protein interaction network.
    Rhodes DR; Tomlins SA; Varambally S; Mahavisno V; Barrette T; Kalyana-Sundaram S; Ghosh D; Pandey A; Chinnaiyan AM
    Nat Biotechnol; 2005 Aug; 23(8):951-9. PubMed ID: 16082366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PINA 3.0: mining cancer interactome.
    Du Y; Cai M; Xing X; Ji J; Yang E; Wu J
    Nucleic Acids Res; 2021 Jan; 49(D1):D1351-D1357. PubMed ID: 33231689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression.
    Zanzoni A; Brun C
    Methods; 2016 Jan; 93():103-9. PubMed ID: 26386316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.