These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34591771)

  • 21. Auditory, tactile, and multisensory cues facilitate search for dynamic visual stimuli.
    Ngo MK; Spence C
    Atten Percept Psychophys; 2010 Aug; 72(6):1654-65. PubMed ID: 20675808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aurally and visually guided visual search in a virtual environment.
    Flanagan P; McAnally KI; Martin RL; Meehan JW; Oldfield SR
    Hum Factors; 1998 Sep; 40(3):461-8. PubMed ID: 9849104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Impact of Focus and Context Visualization Techniques on Depth Perception in Optical See-Through Head-Mounted Displays.
    Martin-Gomez A; Weiss J; Keller A; Eck U; Roth D; Navab N
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4156-4171. PubMed ID: 33979287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Event Related Brain Responses Reveal the Impact of Spatial Augmented Reality Predictive Cues on Mental Effort.
    Volmer B; Baumeister J; Von Itzstein S; Schlesewsky M; Bornkessel-Schlesewsky I; Thomas BH
    IEEE Trans Vis Comput Graph; 2023 Dec; 29(12):4990-5007. PubMed ID: 35947568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-modal links among vision, audition, and touch in complex environments.
    Ferris TK; Sarter NB
    Hum Factors; 2008 Feb; 50(1):17-26. PubMed ID: 18354968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Invisible Boundaries for VR: Auditory and Haptic Signals as Indicators for Real World Boundaries.
    George C; Tamunjoh P; Hussmann H
    IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3414-3422. PubMed ID: 32941151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance on a target acquisition task differs between augmented reality and touch screen displays.
    Weiss H; Tang J; Williams C; Stirling L
    Appl Ergon; 2024 Apr; 116():104185. PubMed ID: 38043456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing Augmented Reality for Eliciting Cue-Provoked Urges to Smoke: Toward Moving Cue-Exposure Into the Real World.
    Brandon KO; Vinci C; Kleinjan M; Hernandez LM; Sawyer LE; Sutton SK; Brandon TH
    Nicotine Tob Res; 2021 May; 23(5):861-865. PubMed ID: 33277653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conveying spatial awareness cues in xR collaborations.
    Irlitti A; Piumsomboon T; Jackson D; Thomas BH
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3178-3189. PubMed ID: 31425035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.
    Hopkins K; Kass SJ; Blalock LD; Brill JC
    Ergonomics; 2017 May; 60(5):692-700. PubMed ID: 27267493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Head up versus head down: the costs of imprecision, unreliability, and visual clutter on cue effectiveness for display signaling.
    Yeh M; Merlo JL; Wickens CD; Brandenburg DL
    Hum Factors; 2003; 45(3):390-407. PubMed ID: 14702991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. More or less? Improving monocular head mounted display assisted visual search by reducing guidance precision.
    Ward M; Helton WS
    Appl Ergon; 2022 Jul; 102():103720. PubMed ID: 35247830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Top-down, bottom-up, and history-driven processing of multisensory attentional cues in intellectual disability: An experimental study in virtual reality.
    Kim J; Hwang E; Shin H; Gil YH; Lee J
    PLoS One; 2021; 16(12):e0261298. PubMed ID: 34932566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory contact cues improve performance when grasping augmented and virtual objects with a tool.
    Zahariev MA; Mackenzie CL
    Exp Brain Res; 2008 Apr; 186(4):619-27. PubMed ID: 18214451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multisensory cues improve sensorimotor synchronisation.
    Elliott MT; Wing AM; Welchman AE
    Eur J Neurosci; 2010 May; 31(10):1828-35. PubMed ID: 20584187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual motion information modulates tactile roughness perception.
    Suzuishi Y; Hidaka S; Kuroki S
    Sci Rep; 2020 Aug; 10(1):13929. PubMed ID: 32811859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mirror in the sky: assessment of an augmented reality method for depicting navigational information.
    Reiner AJ; Hollands JG; Jamieson GA; Boustila S
    Ergonomics; 2020 May; 63(5):548-562. PubMed ID: 32200733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SLAM-based augmented reality for the assessment of short-term spatial memory. A comparative study of visual versus tactile stimuli.
    Munoz-Montoya F; Juan MC; Mendez-Lopez M; Molla R; Abad F; Fidalgo C
    PLoS One; 2021; 16(2):e0245976. PubMed ID: 33539369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using multisensory cues to facilitate air traffic management.
    Ngo MK; Pierce RS; Spence C
    Hum Factors; 2012 Dec; 54(6):1093-103. PubMed ID: 23397817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.