BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34591857)

  • 1. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways.
    Vu BG; Stamnes MA; Li Y; Rogers PD; Moye-Rowley WS
    PLoS Genet; 2021 Sep; 17(9):e1009582. PubMed ID: 34591857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Ergosterol Biosynthesis Modulates Activity of the Pdr1 Transcription Factor in Candida glabrata.
    Vu BG; Thomas GH; Moye-Rowley WS
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UPC2A is required for high-level azole antifungal resistance in Candida glabrata.
    Whaley SG; Caudle KE; Vermitsky JP; Chadwick SG; Toner G; Barker KS; Gygax SE; Rogers PD
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4543-54. PubMed ID: 24867980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonidentical function of Upc2A binding sites in the Candida glabrata CDR1 promoter.
    Vu BG; Moye-Rowley WS
    Genetics; 2022 Sep; 222(2):. PubMed ID: 36063046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss-of-Function
    Ollinger TL; Vu B; Murante D; Parker JE; Simonicova L; Doorley L; Stamnes MA; Kelly SL; Rogers PD; Moye-Rowley WS; Krysan DJ
    mSphere; 2021 Dec; 6(6):e0083021. PubMed ID: 34935446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azole-Resistant Alleles of
    Vu BG; Moye-Rowley WS
    Antimicrob Agents Chemother; 2022 Mar; 66(3):e0209821. PubMed ID: 35007132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and ρ0 cells.
    Paul S; Bair TB; Moye-Rowley WS
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6904-12. PubMed ID: 25199772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flucytosine antagonism of azole activity versus Candida glabrata: role of transcription factor Pdr1 and multidrug transporter Cdr1.
    Steier Z; Vermitsky JP; Toner G; Gygax SE; Edlind T; Katiyar S
    Antimicrob Agents Chemother; 2013 Nov; 57(11):5543-7. PubMed ID: 23979762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive autoregulation and repression of transactivation are key regulatory features of the Candida glabrata Pdr1 transcription factor.
    Khakhina S; Simonicova L; Moye-Rowley WS
    Mol Microbiol; 2018 Mar; 107(6):747-764. PubMed ID: 29363861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor.
    Vermitsky JP; Edlind TD
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3773-81. PubMed ID: 15388433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulation of Candida glabrata Pdr1 by the deubiquitinase subunit Bre5 occurs in a ubiquitin independent manner.
    Paul S; McDonald WH; Moye-Rowley WS
    Mol Microbiol; 2018 Oct; 110(2):309-323. PubMed ID: 30137659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Transcriptomics Approach To Unveiling the Mechanisms of
    Cavalheiro M; Costa C; Silva-Dias A; Miranda IM; Wang C; Pais P; Pinto SN; Mil-Homens D; Sato-Okamoto M; Takahashi-Nakaguchi A; Silva RM; Mira NP; Fialho AM; Chibana H; Rodrigues AG; Butler G; Teixeira MC
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348666
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor.
    Simonicova L; Moye-Rowley WS
    PLoS Genet; 2020 Aug; 16(8):e1009005. PubMed ID: 32841236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STB5 is a negative regulator of azole resistance in Candida glabrata.
    Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE
    Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the Major Candida glabrata Triazole Resistance Determinants on the Activity of the Novel Investigational Tetrazoles VT-1598 and VT-1161.
    Nishimoto AT; Whaley SG; Wiederhold NP; Zhang Q; Yates CM; Hoekstra WJ; Schotzinger RJ; Garvey EP; Rogers PD
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.
    Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H
    Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata.
    Ferrari S; Sanguinetti M; Torelli R; Posteraro B; Sanglard D
    PLoS One; 2011 Mar; 6(3):e17589. PubMed ID: 21408004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing Candida glabrata Pdr1, a Hyperactive Transcription Factor Involved in Azole Resistance.
    Simonicova L; Moye-Rowley WS
    Methods Mol Biol; 2023; 2658():169-179. PubMed ID: 37024701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress.
    Li QQ; Tsai HF; Mandal A; Walker BA; Noble JA; Fukuda Y; Bennett JE
    Mol Med Rep; 2018 May; 17(5):6585-6597. PubMed ID: 29532896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.