These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34591981)

  • 1. Cryo-EM structure of the full-length Lon protease from Thermus thermophilus.
    Coscia F; Löwe J
    FEBS Lett; 2021 Nov; 595(21):2691-2700. PubMed ID: 34591981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into substrate recognition and discrimination by the N-terminal domain of Lon AAA+ protease.
    Tzeng SR; Tseng YC; Lin CC; Hsu CY; Huang SJ; Kuo YT; Chang CI
    Elife; 2021 Apr; 10():. PubMed ID: 33929321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins.
    Maehara T; Hoshino T; Nakamura A
    Extremophiles; 2008 Mar; 12(2):285-96. PubMed ID: 18157502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of Bacillus subtilis Lon protease.
    Duman RE; Löwe J
    J Mol Biol; 2010 Aug; 401(4):653-70. PubMed ID: 20600124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber.
    Cha SS; An YJ; Lee CR; Lee HS; Kim YG; Kim SJ; Kwon KK; De Donatis GM; Lee JH; Maurizi MR; Kang SG
    EMBO J; 2010 Oct; 29(20):3520-30. PubMed ID: 20834233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structure of hexameric yeast Lon protease (PIM1) highlights the importance of conserved structural elements.
    Yang J; Song AS; Wiseman RL; Lander GC
    J Biol Chem; 2022 Mar; 298(3):101694. PubMed ID: 35143841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation.
    Vieux EF; Wohlever ML; Chen JZ; Sauer RT; Baker TA
    Proc Natl Acad Sci U S A; 2013 May; 110(22):E2002-8. PubMed ID: 23674680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 5+1 assemble-to-activate mechanism of the Lon proteolytic machine.
    Li S; Hsieh KY; Kuo CI; Lin TC; Lee SH; Chen YR; Wang CH; Ho MR; Ting SY; Zhang K; Chang CI
    Nat Commun; 2023 Nov; 14(1):7340. PubMed ID: 37957149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple domains of bacterial and human Lon proteases define substrate selectivity.
    He L; Luo D; Yang F; Li C; Zhang X; Deng H; Zhang JR
    Emerg Microbes Infect; 2018 Aug; 7(1):149. PubMed ID: 30120231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product.
    Watanabe S; Muramatsu T; Ao H; Hirayama Y; Takahashi K; Tanokura M; Kuchino Y
    Eur J Biochem; 1999 Dec; 266(3):811-9. PubMed ID: 10583374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for ATPase-powered substrate translocation by the Lon AAA+ protease.
    Li S; Hsieh KY; Su SC; Pintilie GD; Zhang K; Chang CI
    J Biol Chem; 2021 Oct; 297(4):101239. PubMed ID: 34563541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and quality control by Lon-dependent proteolysis.
    Van Melderen L; Aertsen A
    Res Microbiol; 2009 Nov; 160(9):645-51. PubMed ID: 19772918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and the Mode of Activity of Lon Proteases from Diverse Organisms.
    Wlodawer A; Sekula B; Gustchina A; Rotanova TV
    J Mol Biol; 2022 Apr; 434(7):167504. PubMed ID: 35183556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HspQ Functions as a Unique Specificity-Enhancing Factor for the AAA+ Lon Protease.
    Puri N; Karzai AW
    Mol Cell; 2017 Jun; 66(5):672-683.e4. PubMed ID: 28575662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Lon-like protease with no ATP-powered unfolding activity.
    Liao JH; Kuo CI; Huang YY; Lin YC; Lin YC; Yang CY; Wu WL; Chang WH; Liaw YC; Lin LH; Chang CI; Wu SH
    PLoS One; 2012; 7(7):e40226. PubMed ID: 22792246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease.
    Kereïche S; Kováčik L; Bednár J; Pevala V; Kunová N; Ondrovičová G; Bauer J; Ambro Ľ; Bellová J; Kutejová E; Raška I
    Sci Rep; 2016 Sep; 6():33631. PubMed ID: 27632940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lon AAA+ protease.
    Gur E
    Subcell Biochem; 2013; 66():35-51. PubMed ID: 23479436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.
    Wohlever ML; Baker TA; Sauer RT
    Mol Microbiol; 2014 Jan; 91(1):66-78. PubMed ID: 24205897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones.
    Li JK; Liao JH; Li H; Kuo CI; Huang KF; Yang LW; Wu SH; Chang CI
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1789-97. PubMed ID: 23999302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of Lon in Caulobacter crescentus.
    Barros BB; Mahmoud SA; Chien P; Zeinert RD
    J Bacteriol; 2020 Dec; 203(1):. PubMed ID: 33020222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.