BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34591987)

  • 21. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.
    Callender SP; Mathews JA; Kobernyk K; Wettig SD
    Int J Pharm; 2017 Jun; 526(1-2):425-442. PubMed ID: 28495500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity.
    Castelletto V; Edwards-Gayle CJC; Hamley IW; Barrett G; Seitsonen J; Ruokolainen J
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9893-9903. PubMed ID: 30785266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure.
    Gradzielski M; Duvail M; de Molina PM; Simon M; Talmon Y; Zemb T
    Chem Rev; 2021 May; 121(10):5671-5740. PubMed ID: 33955731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting the phase behavior and antimicrobial activity of carvacrol microemulsions.
    Shaaban HA; Edris AE
    J Oleo Sci; 2015; 64(4):393-404. PubMed ID: 25766929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basics of Compounding: Compounding Microemulsions.
    Allen LV
    Int J Pharm Compd; 2018; 22(2):137-143. PubMed ID: 29877861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.
    Xavier-Junior FH; Huang N; Vachon JJ; Rehder VL; do Egito ES; Vauthier C
    Pharm Res; 2016 Dec; 33(12):3031-3043. PubMed ID: 27599989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats.
    Ghosh V; Saranya S; Mukherjee A; Chandrasekaran N
    Colloids Surf B Biointerfaces; 2013 May; 105():152-7. PubMed ID: 23357738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microemulsion-based media as novel drug delivery systems.
    Lawrence MJ; Rees GD
    Adv Drug Deliv Rev; 2000 Dec; 45(1):89-121. PubMed ID: 11104900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oil-in-water microemulsions stabilized by 3-(N,N- dimethylalkylammonio)propanesulfonate surfactants of varying alkyl chain length: Solubilisation of testos-terone propionate.
    Hsieh CM; Warisnoicharoen W; Patel RK; Kianfar F; Lawrence MJ
    Int J Pharm; 2017 Jun; 525(1):1-4. PubMed ID: 28363857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microemulsion: a novel alternative technique for edible oil extraction_a mechanistic viewpoint.
    Abbasi S; Scanlon MG
    Crit Rev Food Sci Nutr; 2023; 63(30):10461-10482. PubMed ID: 35608028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microemulsification of triglyceride sebum and the role of interfacial structure on bicontinuous phase behavior.
    Huang L; Lips A; Co CC
    Langmuir; 2004 Apr; 20(9):3559-63. PubMed ID: 15875384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of lindane removal by Streptomyces sp. M7 by using stable microemulsions.
    Saez JM; Casillas GarcĂ­a V; Benimeli CS
    Ecotoxicol Environ Saf; 2017 Oct; 144():351-359. PubMed ID: 28647602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of the skin permeation of clindamycin phosphate by Aerosol OT/1-butanol microemulsions.
    Junyaprasert VB; Boonsaner P; Leatwimonlak S; Boonme P
    Drug Dev Ind Pharm; 2007 Aug; 33(8):874-80. PubMed ID: 17729105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions.
    Li P; Ghosh A; Wagner RF; Krill S; Joshi YM; Serajuddin AT
    Int J Pharm; 2005 Jan; 288(1):27-34. PubMed ID: 15607255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of polysorbates (Tweens) on structural and antimicrobial properties for microemulsions.
    Guo L; Fang YQ; Liang XR; Xu YY; Chen J; Li YH; Fang S; Meng YC
    Int J Pharm; 2020 Nov; 590():119939. PubMed ID: 33011247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano- and Microemulsions in Biomedicine: From Theory to Practice.
    Nikolaev B; Yakovleva L; Fedorov V; Li H; Gao H; Shevtsov M
    Pharmaceutics; 2023 Jul; 15(7):. PubMed ID: 37514175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.
    Zheng G; Zhao Z; Wong JW
    Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.