BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34591987)

  • 41. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.
    Zheng G; Zhao Z; Wong JW
    Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bicontinuous microemulsions as a biomembrane mimetic system for melittin.
    Hayes DG; Ye R; Dunlap RN; Anunciado DB; Pingali SV; O'Neill HM; Urban VS
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):624-632. PubMed ID: 29138064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour.
    Warisnoicharoen W; Lansley AB; Lawrence MJ
    Int J Pharm; 2000 Mar; 198(1):7-27. PubMed ID: 10722947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.
    Chen Y; Tuo J; Huang H; Liu D; You X; Mai J; Song J; Xie Y; Wu C; Hu H
    Int J Pharm; 2015 Jun; 487(1-2):17-24. PubMed ID: 25841571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microemulsions as potential drug delivery systems: a review.
    Ansari MJ; Kohli K; Dixit N
    PDA J Pharm Sci Technol; 2008; 62(1):66-79. PubMed ID: 18402369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by 'lone' sodium counterions in the water-pool.
    Oldfield C; Freedman RB; Robinson BH
    Faraday Discuss; 2005; 129():247-63; discussion 275-89. PubMed ID: 15715311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough?
    You X; Xing Q; Tuo J; Song W; Zeng Y; Hu H
    Int J Pharm; 2014 Aug; 471(1-2):276-84. PubMed ID: 24858390
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and assessment of stable formulations containing two herbal antimicrobials: Allium sativum L. and Eruca sativa miller seed oils.
    Sanad RA; Mabrouk MI
    Drug Dev Ind Pharm; 2016; 42(6):958-68. PubMed ID: 26467506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?
    Kadri HE; Devanthi PVP; Overton TW; Gkatzionis K
    Food Res Int; 2017 Nov; 101():114-128. PubMed ID: 28941674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance.
    Pajić NZB; Todosijević MN; Vuleta GM; Cekić ND; Dobričić VD; Vučen SR; Čalija BR; Lukić MŽ; Ilić TM; Savić SD
    Acta Pharm; 2017 Dec; 67(4):415-439. PubMed ID: 29337676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of surfactants and microemulsions to the extraction of pyrene and phenanthrene from soil with three different extraction methods.
    Song G; Lu C; Lin JM
    Anal Chim Acta; 2007 Jul; 596(2):312-8. PubMed ID: 17631112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microemulsion systems containing bioactive natural oils: an overview on the state of the art.
    Xavier-Junior FH; Vauthier C; Morais AR; Alencar EN; Egito ES
    Drug Dev Ind Pharm; 2017 May; 43(5):700-714. PubMed ID: 27622950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capillary flooding of wood with microemulsions from Winsor I systems.
    Carrillo CA; Saloni D; Lucia LA; Hubbe MA; Rojas OJ
    J Colloid Interface Sci; 2012 Sep; 381(1):171-9. PubMed ID: 22721790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi.
    Hamouda T; Myc A; Donovan B; Shih AY; Reuter JD; Baker JR
    Microbiol Res; 2001; 156(1):1-7. PubMed ID: 11372645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and characterization of cyanocobalamin (vit B12) microemulsion properties and structure for topical and transdermal application.
    Salimi A; Sharif Makhmal Zadeh B; Moghimipour E
    Iran J Basic Med Sci; 2013 Jul; 16(7):865-72. PubMed ID: 23997918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of the composition of monoacyl phosphatidylcholine based microemulsions on the dermal delivery of flufenamic acid.
    Hoppel M; Ettl H; Holper E; Valenta C
    Int J Pharm; 2014 Nov; 475(1-2):156-62. PubMed ID: 25178824
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin.
    Chen L; Tan F; Wang J; Liu F
    Pharmazie; 2012 Apr; 67(4):319-23. PubMed ID: 22570938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.