These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 34592251)
21. Microbial use for azo dye degradation-a strategy for dye bioremediation. Ajaz M; Shakeel S; Rehman A Int Microbiol; 2020 May; 23(2):149-159. PubMed ID: 31741129 [TBL] [Abstract][Full Text] [Related]
22. Chantarasiri A Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33081196 [TBL] [Abstract][Full Text] [Related]
23. Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. Ngo ACR; Tischler D Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457607 [TBL] [Abstract][Full Text] [Related]
24. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous anaerobic decolorization/degradation of Reactive Black-5 azo dye and chromium(VI) removal by Bacillus cereus strain MS038EH followed by UV-C/H Emadi Z; Sadeghi R; Forouzandeh S; Mohammadi-Moghadam F; Sadeghi R; Sadeghi M Arch Microbiol; 2021 Oct; 203(8):4993-5009. PubMed ID: 34279682 [TBL] [Abstract][Full Text] [Related]
26. In Vitro Biofilm-Mediated Biodegradation of Pesticides and Dye-Contaminated Effluents Using Bacterial Biofilms. Liaqat I; Khalid A; Rubab S; Rashid F; Latif AA; Naseem S; Bibi A; Khan BN; Ansar W; Javed A; Afzaal M; Summer M; Majid S; Ali S; Aftab MN Microorganisms; 2023 Aug; 11(9):. PubMed ID: 37764007 [TBL] [Abstract][Full Text] [Related]
27. Toxicity assessment and microbial degradation of azo dyes. Puvaneswari N; Muthukrishnan J; Gunasekaran P Indian J Exp Biol; 2006 Aug; 44(8):618-26. PubMed ID: 16924831 [TBL] [Abstract][Full Text] [Related]
28. New application of Orchis mascula as a biocarrier for immobilization of mixed cells for biodegradation and detoxification of reactive azo dyes. Hameed BB; Ismail ZZ Environ Sci Pollut Res Int; 2020 Nov; 27(31):38732-38744. PubMed ID: 32632692 [TBL] [Abstract][Full Text] [Related]
29. Laraib Q; Shafique M; Jabeen N; Naz SA; Nawaz HR; Solangi B; Zubair A; Sohail M Pol J Microbiol; 2020 Sep; 69(2):193-203. PubMed ID: 32548988 [TBL] [Abstract][Full Text] [Related]
30. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. Dafale N; Wate S; Meshram S; Nandy T J Hazard Mater; 2008 Nov; 159(2-3):319-28. PubMed ID: 18394798 [TBL] [Abstract][Full Text] [Related]
31. Degradation and detoxification of reactive yellow dyes by Scedosporium apiospermum: a mycoremedial approach. Kumaravel V; Bankole PO; Jooju B; Sadasivam SK Arch Microbiol; 2022 May; 204(6):324. PubMed ID: 35570201 [TBL] [Abstract][Full Text] [Related]
32. Microaerophilic biodegradation of raw textile effluent by synergistic activity of bacterial community DR4. Rathour R; Jain K; Madamwar D; Desai C J Environ Manage; 2019 Nov; 250():109549. PubMed ID: 31545178 [TBL] [Abstract][Full Text] [Related]
33. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. Mahmood F; Shahid M; Hussain S; Shahzad T; Tahir M; Ijaz M; Hussain A; Mahmood K; Imran M; Babar SAK Bioresour Technol; 2017 Jul; 235():176-184. PubMed ID: 28365345 [TBL] [Abstract][Full Text] [Related]
34. Immobilisation of bacteria onto magnetic nanoparticles for the decolorisation and degradation of azo dyes. Nadi A; Boyer D; Charbonnel N; Boukhriss A; Forestier C; Gmouh S IET Nanobiotechnol; 2019 Apr; 13(2):144-149. PubMed ID: 31051444 [TBL] [Abstract][Full Text] [Related]
35. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. Lade H; Kadam A; Paul D; Govindwar S EXCLI J; 2015; 14():158-74. PubMed ID: 26417357 [TBL] [Abstract][Full Text] [Related]
36. Plant-beneficial functions and interactions of Bacillus subtilis SL-44 and Enterobacter cloacae Rs-2 in co-culture by transcriptomics analysis. Li Y; He Y; Wang W; Li X; Xu X; Liu X; Li C; Wu Z Environ Sci Pollut Res Int; 2021 Oct; 28(40):56333-56344. PubMed ID: 34053038 [TBL] [Abstract][Full Text] [Related]
37. Organismic-level acute toxicology profiling of reactive azo dyes. Malik NH; Zain H; Ali N Environ Monit Assess; 2018 Sep; 190(10):612. PubMed ID: 30259157 [TBL] [Abstract][Full Text] [Related]
38. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. Gottlieb A; Shaw C; Smith A; Wheatley A; Forsythe S J Biotechnol; 2003 Feb; 101(1):49-56. PubMed ID: 12523969 [TBL] [Abstract][Full Text] [Related]
39. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae. Corso CR; Almeida EJ; Santos GC; Morão LG; Fabris GS; Mitter EK Water Sci Technol; 2012; 65(8):1490-5. PubMed ID: 22466598 [TBL] [Abstract][Full Text] [Related]
40. The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Imran M; Shaharoona B; Crowley DE; Khalid A; Hussain S; Arshad M Ecotoxicol Environ Saf; 2015 Oct; 120():163-8. PubMed ID: 26074308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]