These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 34592292)

  • 61. Cellulose Nanofibrils Aerogel Cross-Linked by Poly(vinyl alcohol) and Acrylic Acid for Efficient and Recycled Adsorption with Heavy Metal Ions.
    She J; Tian C; Wu Y; Li X; Luo S; Qing Y; Jiang Z
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4167-4175. PubMed ID: 29442758
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Covalent Crosslinking Cellulose/Graphene Aerogels with High Elasticity and Adsorbability for Heavy Metal Ions Adsorption.
    Sun P; Wang M; Wu T; Guo L; Han W
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299235
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Removal of heavy metals from aqueous solution by sawdust adsorption.
    Bulut Y; Tez Z
    J Environ Sci (China); 2007; 19(2):160-6. PubMed ID: 17915723
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Removal of heavy metals from water sources in the developing world using low-cost materials: A review.
    Joseph L; Jun BM; Flora JRV; Park CM; Yoon Y
    Chemosphere; 2019 Aug; 229():142-159. PubMed ID: 31078029
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution.
    Shao Z; Lu J; Ding J; Fan F; Sun X; Li P; Fang Y; Hu Q
    Int J Biol Macromol; 2021 Apr; 176():217-225. PubMed ID: 33581208
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bimetallic MOFs loaded cellulose as an environment friendly bioadsorbent for highly efficient tetracycline removal.
    Liu A; Liu J; He S; Zhang J; Shao W
    Int J Biol Macromol; 2023 Jan; 225():40-50. PubMed ID: 36473529
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modification of chitosan macromolecule and its mechanism for the removal of Pb(II) ions from aqueous environment.
    Yuvaraja G; Pang Y; Chen DY; Kong LJ; Mehmood S; Subbaiah MV; Rao DS; Mouli Pavuluri C; Wen JC; Reddy GM
    Int J Biol Macromol; 2019 Sep; 136():177-188. PubMed ID: 31173826
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.
    Vareda JP; Valente AJ; Durães L
    Adv Colloid Interface Sci; 2016 Nov; 237():28-42. PubMed ID: 27586126
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Potential of sugarcane bagasse in remediation of heavy metals: A review.
    Raj V; Chauhan MS; Pal SL
    Chemosphere; 2022 Nov; 307(Pt 2):135825. PubMed ID: 35948091
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.
    Ma X; Liu X; Anderson DP; Chang PR
    Food Chem; 2015 Aug; 181():133-9. PubMed ID: 25794731
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd
    Fouda-Mbanga BG; Prabakaran E; Pillay K
    Biotechnol Rep (Amst); 2021 Jun; 30():e00609. PubMed ID: 33898275
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.
    Hu Q; Xiao Z; Xiong X; Zhou G; Guan X
    J Environ Sci (China); 2015 Jan; 27():207-16. PubMed ID: 25597679
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal.
    Tang J; Song Y; Zhao F; Spinney S; da Silva Bernardes J; Tam KC
    Carbohydr Polym; 2019 Mar; 208():404-412. PubMed ID: 30658817
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chitosan-coated mesoporous microspheres of calcium silicate hydrate: environmentally friendly synthesis and application as a highly efficient adsorbent for heavy metal ions.
    Zhao J; Zhu YJ; Wu J; Zheng JQ; Zhao XY; Lu BQ; Chen F
    J Colloid Interface Sci; 2014 Mar; 418():208-15. PubMed ID: 24461837
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials.
    Vareda JP; Durães L
    Environ Technol; 2019 Jan; 40(4):529-541. PubMed ID: 29098957
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).
    Zhou Y; Fu S; Zhang L; Zhan H; Levit MV
    Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A review on heavy metal biosorption utilizing modified chitosan.
    Shankar S; Joshi S; Srivastava RK
    Environ Monit Assess; 2023 Oct; 195(11):1350. PubMed ID: 37861930
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite for efficient removal of heavy metals from aqueous solutions.
    Kong Q; Preis S; Li L; Luo P; Hu Y; Wei C
    Int J Biol Macromol; 2020 Apr; 149():581-592. PubMed ID: 31987941
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water.
    Sun K; Tang J; Gong Y; Zhang H
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16640-51. PubMed ID: 26081779
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.
    Meena AK; Mishra GK; Rai PK; Rajagopal C; Nagar PN
    J Hazard Mater; 2005 Jun; 122(1-2):161-70. PubMed ID: 15878798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.