BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34592297)

  • 1. Modeling of soil gas radon as an in situ partitioning tracer for quantifying LNAPL contamination.
    Cecconi A; Verginelli I; Baciocchi R
    Sci Total Environ; 2022 Feb; 806(Pt 2):150593. PubMed ID: 34592297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of advection on the soil gas radon deficit technique for the quantification of LNAPL.
    Cecconi A; Verginelli I; Barrio-Parra F; De Miguel E; Baciocchi R
    Sci Total Environ; 2023 Jun; 875():162619. PubMed ID: 36878290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of NAPL mixture and alteration on
    Le Meur M; Cohen GJV; Laurent M; Höhener P; Atteia O
    Sci Total Environ; 2021 Oct; 791():148210. PubMed ID: 34412393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL.
    Cecconi A; Verginelli I; Baciocchi R; Lanari C; Villani F; Bonfedi G
    J Contam Hydrol; 2023 Sep; 258():104241. PubMed ID: 37690392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2005 Jun; 78(1-2):87-103. PubMed ID: 15949608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination.
    Schubert M; Lehmann K; Paschke A
    Sci Total Environ; 2007 Apr; 376(1-3):306-16. PubMed ID: 17307243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers.
    Schubert M; Paschke A; Lau S; Geyer W; Knöller K
    Environ Pollut; 2007 Feb; 145(3):920-7. PubMed ID: 16781031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O
    J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ?
    De Simone G; Lucchetti C; Pompilj F; Galli G; Tuccimei P; Curatolo P; Giorgi R
    J Environ Radioact; 2017 May; 171():138-147. PubMed ID: 28249206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using ²²²Rn as a naturally occurring tracer to estimate NAPL contamination in an aquifer.
    Yoon YY; Koh DC; Lee KY; Cho SY; Yang JH; Lee KK
    Appl Radiat Isot; 2013 Nov; 81():233-7. PubMed ID: 23602707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory-scale experimental and modelling investigations of
    Cohen GJV; Bernachot I; Su D; Höhener P; Mayer KU; Atteia O
    Sci Total Environ; 2019 Sep; 681():456-466. PubMed ID: 31117017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India.
    Castelluccio M; Agrahari S; De Simone G; Pompilj F; Lucchetti C; Sengupta D; Galli G; Friello P; Curatolo P; Giorgi R; Tuccimei P
    Environ Sci Pollut Res Int; 2018 May; 25(13):12515-12527. PubMed ID: 29464601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertical Light Non-Aqueous Phase Liquid (LNAPL) distribution by Rn prospecting in monitoring wells.
    Briganti A; Voltaggio M; Rainaldi E; Carusi C
    Environ Monit Assess; 2023 Dec; 196(1):19. PubMed ID: 38060038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.
    Davis BM; Istok JD; Semprini L
    J Contam Hydrol; 2002 Sep; 58(1-2):129-46. PubMed ID: 12236552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: performance evaluation for heterogeneous NAPL distribution.
    Werner D; Karapanagioti HK; Höhener P
    J Contam Hydrol; 2009 Aug; 108(1-2):54-63. PubMed ID: 19539397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radon deficit technique applied to the study of the ageing of a spilled LNAPL in a shallow aquifer.
    Briganti A; Voltaggio M; Carusi C; Rainaldi E
    J Contam Hydrol; 2024 Apr; 263():104342. PubMed ID: 38643702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of radon and stable isotope analysis as a tool for decision support concerning the remediation of NAPL-contaminated sites.
    Schubert M; Balcazar M; Lopez A; Peña P; Flores JH; Knöller K
    Isotopes Environ Health Stud; 2007 Sep; 43(3):215-26. PubMed ID: 17786667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory simulation of recent NAPL spills to investigate radon partition among NAPL vapours and soil air.
    De Simone G; Lucchetti C; Pompilj F; Galli G; Tuccimei P
    Appl Radiat Isot; 2017 Feb; 120():106-110. PubMed ID: 27984709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusive partitioning tracer test for nonaqueous phase liquid (NAPL) detection in the vadose zone.
    Werner D; Höhener P
    Environ Sci Technol; 2002 Apr; 36(7):1592-9. PubMed ID: 11999071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.