These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34592425)
61. Discrimination between peptide O-sulfo- and O-phosphotyrosine residues by negative ion mode electrospray tandem mass spectrometry. Edelson-Averbukh M; Shevchenko A; Pipkorn R; Lehmann WD J Am Soc Mass Spectrom; 2011 Dec; 22(12):2256-68. PubMed ID: 21952787 [TBL] [Abstract][Full Text] [Related]
62. Comparison of laser-induced dissociation and high-energy collision-induced dissociation using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) for peptide and protein identification. Macht M; Asperger A; Deininger SO Rapid Commun Mass Spectrom; 2004; 18(18):2093-105. PubMed ID: 15378722 [TBL] [Abstract][Full Text] [Related]
63. Probing the Sensitivity of the Orbitrap Lumos Mass Spectrometer Using a Standard Reference Protein in a Complex Background. Levy MJ; Washburn MP; Florens L J Proteome Res; 2018 Oct; 17(10):3586-3592. PubMed ID: 30180573 [TBL] [Abstract][Full Text] [Related]
64. On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap. Campbell JL; Hager JW; Le Blanc JC J Am Soc Mass Spectrom; 2009 Sep; 20(9):1672-83. PubMed ID: 19539496 [TBL] [Abstract][Full Text] [Related]
65. Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD). Wu WW; Wang G; Insel PA; Hsiao CT; Zou S; Maudsley S; Martin B; Shen RF J Am Soc Mass Spectrom; 2011 Oct; 22(10):1753-62. PubMed ID: 21952889 [TBL] [Abstract][Full Text] [Related]
66. UniNovo: a universal tool for de novo peptide sequencing. Jeong K; Kim S; Pevzner PA Bioinformatics; 2013 Aug; 29(16):1953-62. PubMed ID: 23766417 [TBL] [Abstract][Full Text] [Related]
67. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. Martínez-Esteso MJ; Casado-Vela J; Sellés-Marchart S; Elortza F; Pedreño MA; Bru-Martínez R Mol Biosyst; 2011 Mar; 7(3):749-65. PubMed ID: 21113525 [TBL] [Abstract][Full Text] [Related]
68. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. Singh C; Zampronio CG; Creese AJ; Cooper HJ J Proteome Res; 2012 Sep; 11(9):4517-25. PubMed ID: 22800195 [TBL] [Abstract][Full Text] [Related]
69. On the benefits of acquiring peptide fragment ions at high measured mass accuracy. Scherl A; Shaffer SA; Taylor GK; Hernandez P; Appel RD; Binz PA; Goodlett DR J Am Soc Mass Spectrom; 2008 Jun; 19(6):891-901. PubMed ID: 18417358 [TBL] [Abstract][Full Text] [Related]
70. Performance Investigation of Proteomic Identification by HCD/CID Fragmentations in Combination with High/Low-Resolution Detectors on a Tribrid, High-Field Orbitrap Instrument. Tu C; Li J; Shen S; Sheng Q; Shyr Y; Qu J PLoS One; 2016; 11(7):e0160160. PubMed ID: 27472422 [TBL] [Abstract][Full Text] [Related]
71. Electron transfer dissociation facilitates sequencing of adenosine diphosphate-ribosylated peptides. Zee BM; Garcia BA Anal Chem; 2010 Jan; 82(1):28-31. PubMed ID: 19928949 [TBL] [Abstract][Full Text] [Related]
72. Improving collision induced dissociation (CID), high energy collision dissociation (HCD), and electron transfer dissociation (ETD) fourier transform MS/MS degradome-peptidome identifications using high accuracy mass information. Shen Y; Tolić N; Purvine SO; Smith RD J Proteome Res; 2012 Feb; 11(2):668-77. PubMed ID: 22054047 [TBL] [Abstract][Full Text] [Related]
73. Comparison of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation modes. Ichou F; Schwarzenberg A; Lesage D; Alves S; Junot C; Machuron-Mandard X; Tabet JC J Mass Spectrom; 2014 Jun; 49(6):498-508. PubMed ID: 24913402 [TBL] [Abstract][Full Text] [Related]
74. Radical fragment ions in collision-induced dissociation-based tandem mass spectrometry. Xing S; Huan T Anal Chim Acta; 2022 Apr; 1200():339613. PubMed ID: 35256147 [TBL] [Abstract][Full Text] [Related]
75. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes. Shin JW; Lee YH; Hwang S; Lee SW J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996 [TBL] [Abstract][Full Text] [Related]
76. Application of higher energy collisional dissociation (HCD) to the fragmentation of new DOTA-based labels and N-termini DOTA-labeled peptides. El-Khatib AH; He Y; Esteban-Fernández D; Linscheid MW J Mass Spectrom; 2017 Aug; 52(8):543-549. PubMed ID: 28577300 [TBL] [Abstract][Full Text] [Related]
77. Improved validation of peptide MS/MS assignments using spectral intensity prediction. Sun S; Meyer-Arendt K; Eichelberger B; Brown R; Yen CY; Old WM; Pierce K; Cios KJ; Ahn NG; Resing KA Mol Cell Proteomics; 2007 Jan; 6(1):1-17. PubMed ID: 17018520 [TBL] [Abstract][Full Text] [Related]
78. MS_Piano: A Software Tool for Annotating Peaks in CID Tandem Mass Spectra of Peptides and N-Glycopeptides. Yang X; Neta P; Mirokhin YA; Tchekhovskoi DV; Remoroza CA; Burke MC; Liang Y; Markey SP; Stein SE J Proteome Res; 2021 Sep; 20(9):4603-4609. PubMed ID: 34264676 [TBL] [Abstract][Full Text] [Related]
79. An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics. Hendriks IA; Larsen SC; Nielsen ML Mol Cell Proteomics; 2019 May; 18(5):1010-1026. PubMed ID: 30798302 [TBL] [Abstract][Full Text] [Related]
80. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Kelstrup CD; Frese C; Heck AJ; Olsen JV; Nielsen ML Mol Cell Proteomics; 2014 Aug; 13(8):1914-24. PubMed ID: 24895383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]