These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Calixto CD; da Silva Santana JK; de Lira EB; Sassi PGP; Rosenhaim R; da Costa Sassi CF; da Conceição MM; Sassi R Bioresour Technol; 2016 Dec; 221():438-446. PubMed ID: 27668876 [TBL] [Abstract][Full Text] [Related]
9. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Dos Santos RR; Araújo OQF; de Medeiros JL; Chaloub RM Bioresour Technol; 2016 Mar; 204():38-48. PubMed ID: 26773377 [TBL] [Abstract][Full Text] [Related]
11. Potential application of a newly isolated microalga Desmodesmus sp. GXU-A4 for recycling Molasses vinasse. Jiang Y; Chen X; Wang Z; Deng H; Qin X; Huang L; Shen P Chemosphere; 2023 Jul; 328():138616. PubMed ID: 37028718 [TBL] [Abstract][Full Text] [Related]
12. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients. Liao Q; Chang HX; Fu Q; Huang Y; Xia A; Zhu X; Zhong N Bioresour Technol; 2018 Feb; 250():583-590. PubMed ID: 29207290 [TBL] [Abstract][Full Text] [Related]
13. Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. Sydney EB; Carvalho JC; Letti LAJ; Magalhães AI; Karp SG; Martinez-Burgos WJ; Candeo ES; Rodrigues C; Vandenberghe LPS; Neto CJD; Torres LAZ; Medeiros ABP; Woiciechowski AL; Soccol CR J Hazard Mater; 2021 Feb; 404(Pt A):124059. PubMed ID: 33027733 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal co-liquefaction of microalgae, sugarcane bagasse, brewer's spent grain, and sludge from a paper recycling mill: Modeling and evaluation of biocrude and biochar yield. Bassoli SC; Sanson AL; Naves FL; Amaral MS J Environ Manage; 2024 Apr; 356():120626. PubMed ID: 38518491 [TBL] [Abstract][Full Text] [Related]
15. Mixotrophy in green microalgae grown on an organic and nutrient rich waste. Candido C; Lombardi AT World J Microbiol Biotechnol; 2020 Jan; 36(2):20. PubMed ID: 31955252 [TBL] [Abstract][Full Text] [Related]
16. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation. Wong YK; Ho KC; Tsang YF; Wang L; Yung KK Water Environ Res; 2016 Jan; 88(1):40-6. PubMed ID: 26803025 [TBL] [Abstract][Full Text] [Related]
17. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Atta M; Idris A; Bukhari A; Wahidin S Bioresour Technol; 2013 Nov; 148():373-8. PubMed ID: 24063820 [TBL] [Abstract][Full Text] [Related]
19. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
20. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content. de Freitas BCB; Brächer EH; de Morais EG; Atala DIP; de Morais MG; Costa JAV Environ Technol; 2019 Mar; 40(8):1062-1070. PubMed ID: 29251249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]