These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Superconducting gap structure in the electron doped BiS Bhattacharyya A; Adroja DT; Hillier AD; Jha R; Awana VPS; Strydom AM J Phys Condens Matter; 2017 Jul; 29(26):265602. PubMed ID: 28555613 [TBL] [Abstract][Full Text] [Related]
3. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb Singh D; Barker JAT; Thamizhavel A; Hillier AD; Paul DM; Singh RP J Phys Condens Matter; 2018 Feb; 30(7):075601. PubMed ID: 29355110 [TBL] [Abstract][Full Text] [Related]
4. Detection of time-reversal symmetry breaking in the noncentrosymmetric superconductor Re6Zr using muon-spin spectroscopy. Singh RP; Hillier AD; Mazidian B; Quintanilla J; Annett JF; Paul DM; Balakrishnan G; Lees MR Phys Rev Lett; 2014 Mar; 112(10):107002. PubMed ID: 24679322 [TBL] [Abstract][Full Text] [Related]
5. Evidence of a Nodal Line in the Superconducting Gap Symmetry of Noncentrosymmetric ThCoC_{2}. Bhattacharyya A; Adroja DT; Panda K; Saha S; Das T; Machado AJS; Cigarroa OV; Grant TW; Fisk Z; Hillier AD; Manfrinetti P Phys Rev Lett; 2019 Apr; 122(14):147001. PubMed ID: 31050469 [TBL] [Abstract][Full Text] [Related]
6. Investigation of superconducting gap structure in HfIrSi using muon spin relaxation/rotation. Bhattacharyya A; Panda K; Adroja DT; Kase N; Biswas PK; Saha S; Das T; Lees MR; Hillier AD J Phys Condens Matter; 2020 Feb; 32(8):085601. PubMed ID: 31689696 [TBL] [Abstract][Full Text] [Related]
8. Coexistence of topological node surface and Dirac fermions in phonon-mediated superconductor YB Wang S; Zhong M; Liu H; Ju M Phys Chem Chem Phys; 2024 Jan; 26(2):1454-1461. PubMed ID: 38113107 [TBL] [Abstract][Full Text] [Related]
9. Two superconducting states with broken time-reversal symmetry in FeSe Matsuura K; Roppongi M; Qiu M; Sheng Q; Cai Y; Yamakawa K; Guguchia Z; Day RP; Kojima KM; Damascelli A; Sugimura Y; Saito M; Takenaka T; Ishihara K; Mizukami Y; Hashimoto K; Gu Y; Guo S; Fu L; Zhang Z; Ning F; Zhao G; Dai G; Jin C; Beare JW; Luke GM; Uemura YJ; Shibauchi T Proc Natl Acad Sci U S A; 2023 May; 120(21):e2208276120. PubMed ID: 37186859 [TBL] [Abstract][Full Text] [Related]
10. Probing the superconducting pairing of the La Shang T; Svanidze E; Shiroka T J Phys Condens Matter; 2023 Dec; 36(10):. PubMed ID: 37988753 [TBL] [Abstract][Full Text] [Related]
11. Coexistence of Bulk-Nodal and Surface-Nodeless Cooper Pairings in a Superconducting Dirac Semimetal. Yang XP; Zhong Y; Mardanya S; Cochran TA; Chapai R; Mine A; Zhang J; Sánchez-Barriga J; Cheng ZJ; Clark OJ; Yin JX; Blawat J; Cheng G; Belopolski I; Nagashima T; Najafzadeh S; Gao S; Yao N; Bansil A; Jin R; Chang TR; Shin S; Okazaki K; Hasan MZ Phys Rev Lett; 2023 Jan; 130(4):046402. PubMed ID: 36763428 [TBL] [Abstract][Full Text] [Related]
12. Superconductivity and field-induced magnetism in Pr2-xCexCuO4 single crystals. Sonier JE; Poon KF; Luke GM; Kyriakou P; Miller RI; Liang R; Wiebe CR; Fournier P; Greene RL Phys Rev Lett; 2003 Oct; 91(14):147002. PubMed ID: 14611547 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic gapping of topological Weyl rings in the charge-density-wave superconductor In Li Y; Wu Y; Xu C; Liu N; Ma J; Lv B; Yao G; Liu Y; Bai H; Yang X; Qiao L; Li M; Li L; Xing H; Huang Y; Ma J; Shi M; Cao C; Liu Y; Liu C; Jia J; Xu ZA Sci Bull (Beijing); 2021 Feb; 66(3):243-249. PubMed ID: 36654329 [TBL] [Abstract][Full Text] [Related]
15. Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. Shermadini Z; Krzton-Maziopa A; Bendele M; Khasanov R; Luetkens H; Conder K; Pomjakushina E; Weyeneth S; Pomjakushin V; Bossen O; Amato A Phys Rev Lett; 2011 Mar; 106(11):117602. PubMed ID: 21469895 [TBL] [Abstract][Full Text] [Related]
16. Time-Reversal Symmetry Breaking in Re-Based Superconductors. Shang T; Smidman M; Ghosh SK; Baines C; Chang LJ; Gawryluk DJ; Barker JAT; Singh RP; Paul DM; Balakrishnan G; Pomjakushina E; Shi M; Medarde M; Hillier AD; Yuan HQ; Quintanilla J; Mesot J; Shiroka T Phys Rev Lett; 2018 Dec; 121(25):257002. PubMed ID: 30608781 [TBL] [Abstract][Full Text] [Related]
17. Paramagnetic probes in an organic semiconductor: μSR and DFT calculations of the Mu adducts of Alq McKenzie I; Cannon J; Cordoni-Jordan D; Mulley BP; Scheuermann R J Chem Phys; 2022 Aug; 157(6):064702. PubMed ID: 35963724 [TBL] [Abstract][Full Text] [Related]
18. Coexistence of ferromagnetic fluctuations and superconductivity in the actinide superconductor UTe Sundar S; Gheidi S; Akintola K; Côté AM; Dunsiger SR; Ran S; Butch NP; Saha SR; Paglione J; Sonier JE Phys Rev B; 2019 Oct; 100(14):. PubMed ID: 34131607 [TBL] [Abstract][Full Text] [Related]
19. Microscopic probing of the superconducting and normal state properties of Ta Graham JN; Liu H; Sazgari V; Mielke Iii C; Medarde M; Luetkens H; Khasanov R; Shi Y; Guguchia Z Commun Mater; 2024; 5(1):225. PubMed ID: 39398529 [TBL] [Abstract][Full Text] [Related]
20. Muon-spin-rotation measurements of the penetration depth of the infinite-layer electron-doped Sr0.9La0.1CuO2 cuprate superconductor. Shengelaya A; Khasanov R; Eshchenko DG; Di Castro D; Savić IM; Park MS; Kim KH; Lee SI; Müller KA; Keller H Phys Rev Lett; 2005 Apr; 94(12):127001. PubMed ID: 15903950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]