These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34593188)

  • 1. Revealing photon transmission in an ultraviolet reactor: Advanced approaches for measuring fluence rate distribution in water for model validation.
    Li M; Lou F; Sun Z; Li W; Bolton JR; Qiang Z
    J Environ Sci (China); 2021 Dec; 110():169-177. PubMed ID: 34593188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.
    Li M; Li W; Qiang Z; Blatchley ER
    Environ Sci Technol; 2017 Jul; 51(14):8094-8100. PubMed ID: 28650639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ measurement of UV fluence rate distribution by use of a micro fluorescent silica detector.
    Li M; Qiang Z; Li T; Bolton JR; Liu C
    Environ Sci Technol; 2011 Apr; 45(7):3034-9. PubMed ID: 21388180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of reflection on the fluence rate distribution in a UV reactor with various inner walls as measured using a micro-fluorescent silica detector.
    Li M; Qiang Z; Bolton JR; Ben W
    Water Res; 2012 Jul; 46(11):3595-602. PubMed ID: 22542024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector.
    Li M; Li W; Wen D; Qiang Z; Blatchley ER
    Environ Sci Technol; 2017 Nov; 51(22):13241-13247. PubMed ID: 29068223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of inner-wall reflection on UV reactor performance as evaluated by using computational fluid dynamics: The role of diffuse reflection.
    Li W; Li M; Bolton JR; Qu J; Qiang Z
    Water Res; 2017 Feb; 109():382-388. PubMed ID: 27951477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of lamp shadowing and reflection on the fluence rate distribution in a multiple low-pressure UV lamp array.
    Jin S; Linden KG; Ducoste J; Liu D
    Water Res; 2005 Jul; 39(12):2711-21. PubMed ID: 15993925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the fluence determination methods for UV reactors: Ensuring the reliability of UV disinfection.
    Sun Z; Li M; Li W; Qiang Z
    Chemosphere; 2022 Jan; 286(Pt 1):131488. PubMed ID: 34303911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of the effects of surface roughness on water disinfection UV reactor.
    Sultan T; Ahmad S; Cho J
    Chemosphere; 2016 Apr; 148():108-17. PubMed ID: 26802269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental measurements of fluence distribution in a UV reactor using fluorescent microspheres.
    Bohrerova Z; Bohrer G; Mohanraj SM; Ducoste J; Linden KG
    Environ Sci Technol; 2005 Nov; 39(22):8925-30. PubMed ID: 16323795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An actinometric method to characterize performance of reflecting UVC reactors used for water treatment.
    Sperle P; Mirlach A; Linden K; Hübner U; Drewes JE
    Water Res; 2023 Feb; 230():119543. PubMed ID: 36628868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for determining the optimal discretization of UV lamps for emission-based fluence rate models.
    Powell C; Lawryshyn Y
    Water Sci Technol; 2015; 71(12):1768-74. PubMed ID: 26067495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.
    Blatchley ER; Shen C; Scheible OK; Robinson JP; Ragheb K; Bergstrom DE; Rokjer D
    Water Res; 2008 Feb; 42(3):677-88. PubMed ID: 17888484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Assessment of Photon Fluence Rate Distributions in a Medium-Pressure UV Photoreactor.
    Li M; Qiang Z; Wang C; Bolton JR; Blatchley ER
    Environ Sci Technol; 2017 Mar; 51(6):3453-3460. PubMed ID: 28221779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual prototyping and characterization of a point-of-entry UV-LED water disinfection reactor with the synergic effect of radiation, hydrodynamics, and inactivation kinetics.
    Mohaghegh Montazeri M; Taghipour F
    Water Res; 2023 Feb; 230():119581. PubMed ID: 36638732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor.
    Sultan T
    Chemosphere; 2016 Jul; 155():170-179. PubMed ID: 27108375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.
    Kheyrandish A; Mohseni M; Taghipour F
    Environ Sci Technol; 2018 Jul; 52(13):7390-7398. PubMed ID: 29856617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of microbial inactivation efficiency of a UV disinfection system employing an excimer lamp.
    Naunovic Z; Lim S; Blatchley ER
    Water Res; 2008 Dec; 42(19):4838-46. PubMed ID: 18848711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental studies of water disinfection in UV reactors.
    Li HY; Osman H; Kang CW; Ba T; Lou J
    Water Sci Technol; 2019 Oct; 80(8):1456-1465. PubMed ID: 31961808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.