BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 34593490)

  • 1. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study.
    Stieglitz LH; Hofer AS; Bolliger M; Oertel MF; Filli L; Willi R; Cathomen A; Meyer C; Schubert M; Hubli M; Kessler TM; Baumann CR; Imbach L; Krüsi I; Prusse A; Schwab ME; Regli L; Curt A
    BMJ Open; 2021 Sep; 11(9):e047670. PubMed ID: 34593490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation of the cuneiform nucleus enhances the effects of rehabilitative training on locomotor recovery after incomplete spinal cord injury.
    Scheuber MI; Guidolin C; Martins S; Sartori AM; Hofer AS; Schwab ME
    Front Neurosci; 2024; 18():1352742. PubMed ID: 38595973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep brain stimulation of the midbrain locomotor region improves paretic hindlimb function after spinal cord injury in rats.
    Bachmann LC; Matis A; Lindau NT; Felder P; Gullo M; Schwab ME
    Sci Transl Med; 2013 Oct; 5(208):208ra146. PubMed ID: 24154600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury.
    Noga BR; Guest JD
    Curr Opin Neurol; 2021 Dec; 34(6):804-811. PubMed ID: 34593718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury.
    Hofer AS; Scheuber MI; Sartori AM; Good N; Stalder SA; Hammer N; Fricke K; Schalbetter SM; Engmann AK; Weber RZ; Rust R; Schneider MP; Russi N; Favre G; Schwab ME
    Brain; 2022 Oct; 145(10):3681-3697. PubMed ID: 35583160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig.
    Chang SJ; Santamaria AJ; Sanchez FJ; Villamil LM; Saraiva PP; Benavides F; Nunez-Gomez Y; Solano JP; Opris I; Guest JD; Noga BR
    Brain Stimul; 2021; 14(3):467-476. PubMed ID: 33652130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury.
    Bonizzato M; James ND; Pidpruzhnykova G; Pavlova N; Shkorbatova P; Baud L; Martinez-Gonzalez C; Squair JW; DiGiovanna J; Barraud Q; Micera S; Courtine G
    Nat Commun; 2021 Mar; 12(1):1925. PubMed ID: 33771986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of epidural spinal cord stimulation after chronic spinal cord injury on volitional movement and cardiovascular function: study protocol for the phase II open label controlled E-STAND trial.
    Darrow DP; Balser DY; Freeman D; Pelrine E; Krassioukov A; Phillips A; Netoff T; Parr A; Samadani U
    BMJ Open; 2022 Jul; 12(7):e059126. PubMed ID: 35851008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury.
    Kumar R; Htwe O; Baharudin A; Ariffin MH; Abdul Rhani S; Ibrahim K; Rustam A; Gan R
    JMIR Res Protoc; 2016 Dec; 5(4):e230. PubMed ID: 27919862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury.
    Morrison SA; Lorenz D; Eskay CP; Forrest GF; Basso DM
    Arch Phys Med Rehabil; 2018 Mar; 99(3):555-562. PubMed ID: 29107040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of Activity-Based Therapy in Comparison with Surface Spinal Stimulation in People with Traumatic Incomplete Spinal Cord Injury for Activation of Central Pattern Generator for Locomotion: Study Protocol for a 24-Week Randomized Controlled Trial.
    Bedi PK; Arumugam N; Chhabra HS
    Asian Spine J; 2018 Jun; 12(3):503-510. PubMed ID: 29879778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological basis of neurorehabilitation--locomotor training after spinal cord injury.
    Hubli M; Dietz V
    J Neuroeng Rehabil; 2013 Jan; 10():5. PubMed ID: 23336934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional contribution of mesencephalic locomotor region nuclei to locomotor recovery after spinal cord injury.
    Roussel M; Lafrance-Zoubga D; Josset N; Lemieux M; Bretzner F
    Cell Rep Med; 2023 Feb; 4(2):100946. PubMed ID: 36812893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Deep Brain Stimulation Targets for Neuropathic Pain After Spinal Cord Injury Using Localized Increases in White Matter Fiber Cross Section.
    Black SR; Janson A; Mahan M; Anderson J; Butson CR
    Neuromodulation; 2022 Feb; 25(2):276-285. PubMed ID: 35125147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for rapid onset of mobilisation in patients with traumatic spinal cord injury (PROMPT-SCI) study: a single-arm proof-of-concept trial of early in-bed leg cycling following acute traumatic spinal cord injury.
    Mac-Thiong JM; Richard-Denis A; Petit Y; Bernard F; Barthélemy D; Dionne A; Magnuson DSK
    BMJ Open; 2021 Nov; 11(11):e049884. PubMed ID: 34725077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion.
    Noga BR; Sanchez FJ; Villamil LM; O'Toole C; Kasicki S; Olszewski M; Cabaj AM; Majczyński H; Sławińska U; Jordan LM
    Front Neural Circuits; 2017; 11():34. PubMed ID: 28579945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury.
    Yu P; Zhang W; Liu Y; Sheng C; So KF; Zhou L; Zhu H
    Int Rev Neurobiol; 2019; 147():199-217. PubMed ID: 31607355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Fiorenza G; Smyth L; Favale B; Brangaccio J; Sniffen J
    J Neurophysiol; 2019 Mar; 121(3):853-866. PubMed ID: 30625010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.