These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34593641)

  • 1. Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity.
    Kowalski N; Dash SS; Sémon P; Sénéchal D; Tremblay AM
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34593641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of extrinsic and intrinsic tunnelling in cuprate superconductors.
    Beanland J; Alexandrov AS
    J Phys Condens Matter; 2010 Oct; 22(40):403202. PubMed ID: 21386561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the electron pairing mechanism of copper-oxide high temperature superconductivity.
    O'Mahony SM; Ren W; Chen W; Chong YX; Liu X; Eisaki H; Uchida S; Hamidian MH; Davis JCS
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2207449119. PubMed ID: 36067325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual behavior of cuprates explained by heterogeneous charge localization.
    Pelc D; Popčević P; Požek M; Greven M; Barišić N
    Sci Adv; 2019 Jan; 5(1):eaau4538. PubMed ID: 30746450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical evidence of fluctuating stripes in the normal state of high-
    Huang EW; Mendl CB; Liu S; Johnston S; Jiang HC; Moritz B; Devereaux TP
    Science; 2017 Dec; 358(6367):1161-1164. PubMed ID: 29191902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic energy driven pairing in cuprate superconductors.
    Maier TA; Jarrell M; Macridin A; Slezak C
    Phys Rev Lett; 2004 Jan; 92(2):027005. PubMed ID: 14753963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping-dependent charge order correlations in electron-doped cuprates.
    da Silva Neto EH; Yu B; Minola M; Sutarto R; Schierle E; Boschini F; Zonno M; Bluschke M; Higgins J; Li Y; Yu G; Weschke E; He F; Le Tacon M; Greene RL; Greven M; Sawatzky GA; Keimer B; Damascelli A
    Sci Adv; 2016 Aug; 2(8):e1600782. PubMed ID: 27536726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Superconductivity: From Cuprates via Nickelates to Palladates.
    Kitatani M; Si L; Worm P; Tomczak JM; Arita R; Held K
    Phys Rev Lett; 2023 Apr; 130(16):166002. PubMed ID: 37154662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Visualization of Ambipolar Mott Transition in Cuprate CuO_{2} Planes.
    Zhong Y; Fan JQ; Wang RF; Wang S; Zhang X; Zhu Y; Dou Z; Yu XQ; Wang Y; Zhang D; Zhu J; Song CL; Ma XC; Xue QK
    Phys Rev Lett; 2020 Aug; 125(7):077002. PubMed ID: 32857570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model.
    Mai P; Nichols NS; Karakuzu S; Bao F; Del Maestro A; Maier TA; Johnston S
    Nat Commun; 2023 May; 14(1):2889. PubMed ID: 37210389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.
    Putzke C; Malone L; Badoux S; Vignolle B; Vignolles D; Tabis W; Walmsley P; Bird M; Hussey NE; Proust C; Carrington A
    Sci Adv; 2016 Mar; 2(3):e1501657. PubMed ID: 27034989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly correlated superconductivity.
    Capone M; Fabrizio M; Castellani C; Tosatti E
    Science; 2002 Jun; 296(5577):2364-6. PubMed ID: 12089436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified picture of the oxygen isotope effect in cuprate superconductors.
    Chen XJ; Struzhkin VV; Wu Z; Lin HQ; Hemley RJ; Mao HK
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3732-5. PubMed ID: 17360421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors.
    Bergman DL; Pereg-Barnea T
    Materials (Basel); 2011 Oct; 4(10):1835-1845. PubMed ID: 28824111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-phase charge-density real-space-pairing model of high-Tc superconductivity.
    Humphreys CJ
    Acta Crystallogr A; 1999 Mar; 55(Pt 2 Pt 1):228-233. PubMed ID: 10927254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspective on the phase diagram of cuprate high-temperature superconductors.
    Rybicki D; Jurkutat M; Reichardt S; Kapusta C; Haase J
    Nat Commun; 2016 May; 7():11413. PubMed ID: 27150719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARPES studies on new types of electron-doped cuprate superconductors.
    Horio M; Fujimori A
    J Phys Condens Matter; 2018 Dec; 30(50):503001. PubMed ID: 30468154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous vortex liquid in charge-ordered cuprate superconductors.
    Hsu YT; Berben M; Čulo M; Adachi S; Kondo T; Takeuchi T; Wang Y; Wiedmann S; Hayden SM; Hussey NE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33579820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden Fermionic Excitation Boosting High-Temperature Superconductivity in Cuprates.
    Sakai S; Civelli M; Imada M
    Phys Rev Lett; 2016 Feb; 116(5):057003. PubMed ID: 26894730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapse of the magnetic gap of cuprate superconductors within a three-band model of resonant inelastic x-ray scattering.
    Markiewicz RS; Bansil A
    Phys Rev Lett; 2006 Mar; 96(10):107005. PubMed ID: 16605780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.