These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34593818)

  • 1. Growth and site-specific organization of micron-scale biomolecular devices on living mammalian cells.
    Jia S; Phua SC; Nihongaki Y; Li Y; Pacella M; Li Y; Mohammed AM; Sun S; Inoue T; Schulman R
    Nat Commun; 2021 Sep; 12(1):5729. PubMed ID: 34593818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembling DNA nanotubes to connect molecular landmarks.
    Mohammed AM; Šulc P; Zenk J; Schulman R
    Nat Nanotechnol; 2017 May; 12(4):312-316. PubMed ID: 27992412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.
    Jorgenson TD; Mohammed AM; Agrawal DK; Schulman R
    ACS Nano; 2017 Feb; 11(2):1927-1936. PubMed ID: 28085250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteins and peptides as biological nanowires: towards biosensing devices.
    Domigan LJ
    Methods Mol Biol; 2013; 996():131-52. PubMed ID: 23504422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications.
    Liu X; Zhao Y; Liu P; Wang L; Lin J; Fan C
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):8996-9011. PubMed ID: 30290046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of precisely defined DNA nanotube superstructures using DNA origami seeds.
    Mohammed AM; Velazquez L; Chisenhall A; Schiffels D; Fygenson DK; Schulman R
    Nanoscale; 2017 Jan; 9(2):522-526. PubMed ID: 27957574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging.
    Zhao Y; Shi L; Kuang H; Xu C
    Top Curr Chem (Cham); 2020 Feb; 378(1):18. PubMed ID: 32009187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition.
    Zhao Z; Banerjee IA; Matsui H
    J Am Chem Soc; 2005 Jun; 127(25):8930-1. PubMed ID: 15969552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circularly Polarized Light Triggers Biosensing Based on Chiral Assemblies.
    Hao C; Xu L; Sun M; Zhang H; Kuang H; Xu C
    Chemistry; 2019 Sep; 25(53):12235-12240. PubMed ID: 31209950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes.
    Agarwal S; Franco E
    J Am Chem Soc; 2019 May; 141(19):7831-7841. PubMed ID: 31042366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of DNA-polypyrrole nanocapsule.
    Mandal SK; Dutta P
    J Nanosci Nanotechnol; 2004 Nov; 4(8):972-5. PubMed ID: 15656188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites.
    Takabayashi S; Klein WP; Onodera C; Rapp B; Flores-Estrada J; Lindau E; Snowball L; Sam JT; Padilla JE; Lee J; Knowlton WB; Graugnard E; Yurke B; Kuang W; Hughes WL
    Nanoscale; 2014 Nov; 6(22):13928-38. PubMed ID: 25311051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical assembly of gold nanorod stripe patterns for sensing and cells alignment.
    Wang S; Wang Z; Tang N; Liu C; He S; Liu B; Qu H; Duan X; Pang W; Wang Y
    Nanotechnology; 2019 Apr; 30(17):175302. PubMed ID: 30634179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamentals and application of ordered molecular assemblies to affinity biosensing.
    Matharu Z; Bandodkar AJ; Gupta V; Malhotra BD
    Chem Soc Rev; 2012 Feb; 41(3):1363-402. PubMed ID: 22105315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Synthetic Myosin Filaments Using DNA Nanotubes.
    Sommese RF; Sivaramakrishnan S
    Methods Mol Biol; 2018; 1805():93-101. PubMed ID: 29971714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free detection of cell-contractile activity with lipid nanotubes.
    Sugihara K; Delai M; Mahnna R; Kusch J; Poulikakos D; Vörös J; Zambelli T; Ferrari A
    Integr Biol (Camb); 2013 Feb; 5(2):423-30. PubMed ID: 23212045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research highlights: Microtechnologies for engineering the cellular environment.
    Tseng P; Kunze A; Kittur H; Di Carlo D
    Lab Chip; 2014 Apr; 14(7):1226-9. PubMed ID: 24557413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity.
    Wang L; Meng T; Zhao D; Jia H; An S; Yang X; Wang H; Zhang Y
    Biosens Bioelectron; 2020 Jan; 148():111834. PubMed ID: 31706175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-based machines.
    Beissenhirtz MK; Willner I
    Org Biomol Chem; 2006 Sep; 4(18):3392-401. PubMed ID: 17036129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.