These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34593849)

  • 1. V
    Hughes MP; Kruchek EJ; Beale AD; Kitcatt SJ; Qureshi S; Trott ZP; Charbonnel O; Agbaje PA; Henslee EA; Dorey RA; Lewis R; Labeed FH
    Sci Rep; 2021 Sep; 11(1):19446. PubMed ID: 34593849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic anion/cation imbalances applied across the membrane capacitance may form a significant component of the resting membrane potential of red blood cells.
    Hughes MP; Fry CH; Labeed FH
    Sci Rep; 2022 Sep; 12(1):15005. PubMed ID: 36056086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellular zeta potential: cell electrophysiology beyond the membrane.
    Hughes MP
    Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38291769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of cell's membrane potential on extracellular voltage observed in Chara globularis.
    Mahadeva M; Niestępski S; Kowacz M
    Biophys Chem; 2024 Apr; 307():107199. PubMed ID: 38335807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium.
    Verheugen JA; Vijverberg HP; Oortgiesen M; Cahalan MD
    J Gen Physiol; 1995 Jun; 105(6):765-94. PubMed ID: 7561743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRPV4 Contributes to Resting Membrane Potential in Retinal Müller Cells: Implications in Cell Volume Regulation.
    Netti V; Fernández J; Kalstein M; Pizzoni A; Di Giusto G; Rivarola V; Ford P; Capurro C
    J Cell Biochem; 2017 Aug; 118(8):2302-2313. PubMed ID: 28098409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R; Gengnagel C; Donath J
    Biomed Biochim Acta; 1991; 50(7):869-77. PubMed ID: 1759965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photometric assessment of volume changes coupled with membrane potential in valinomycin-incorporated red blood cells.
    Yang XS; Kamino K
    Jpn J Physiol; 1997 Apr; 47(2):217-30. PubMed ID: 9201551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential and cancer progression.
    Yang M; Brackenbury WJ
    Front Physiol; 2013; 4():185. PubMed ID: 23882223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators.
    Pearlstein RA; Dickson CJ; Hornak V
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):177-194. PubMed ID: 27836643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of passive potassium efflux from human red blood cells using ion-specific electrodes.
    Morel FM
    J Membr Biol; 1973; 12(1):69-88. PubMed ID: 4205465
    [No Abstract]   [Full Text] [Related]  

  • 12. Whole-cell and single-channel currents across the plasmalemma of corn shoot suspension cells.
    Fairley K; Laver D; Walker NA
    J Membr Biol; 1991 Apr; 121(1):11-22. PubMed ID: 2051473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a channel for the electrogenic transport of chloride ion in the rat hepatocyte.
    Bear CE; Petrunka CN; Strasberg SM
    Hepatology; 1985; 5(3):383-91. PubMed ID: 2581880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS
    J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential.
    Hladky SB; Rink TJ
    J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF; Laris PC
    J Physiol; 1974 Jun; 239(3):519-52. PubMed ID: 4851321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single K+ channels in endocrine cells dispersed from the cricket (Gryllus bimaculatus) corpora allata.
    Kosakai K; Yoshino M
    J Comp Physiol B; 2001 Jun; 171(5):347-56. PubMed ID: 11497122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase.
    Combs DJ; Shin HG; Xu Y; Ramu Y; Lu Z
    J Gen Physiol; 2013 Oct; 142(4):367-80. PubMed ID: 24043861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A charybdotoxin-insensitive conductance in human T lymphocytes: T cell membrane potential is set by distinct K+ channels.
    Verheugen JA; Korn H
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):317-31. PubMed ID: 9306275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependence of the Ca2+-activated K+ conductance of human red cell membranes is strongly dependent on the extracellular K+ concentration.
    Vestergaard-Bogind B; Stampe P; Christophersen P
    J Membr Biol; 1987; 95(2):121-30. PubMed ID: 3573031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.