These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34593873)
1. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Tavakoli S; Ghaffari A; Kouzehkanan ZM; Hosseini R Sci Rep; 2021 Sep; 11(1):19428. PubMed ID: 34593873 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Prinyakupt J; Pluempitiwiriyawej C Biomed Eng Online; 2015 Jun; 14():63. PubMed ID: 26123131 [TBL] [Abstract][Full Text] [Related]
3. WBC-based segmentation and classification on microscopic images: a minor improvement. Lam XH; Ng KW; Yoong YJ; Ng SB F1000Res; 2021; 10():1168. PubMed ID: 35399225 [TBL] [Abstract][Full Text] [Related]
4. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Das BK; Dutta HS Med Biol Eng Comput; 2020 Nov; 58(11):2789-2803. PubMed ID: 32929660 [TBL] [Abstract][Full Text] [Related]
5. White blood cells detection and classification based on regional convolutional neural networks. Kutlu H; Avci E; Özyurt F Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248 [TBL] [Abstract][Full Text] [Related]
6. Efficient leukocytes detection and classification in microscopic blood images using convolutional neural network coupled with a dual attention network. Khan S; Sajjad M; Abbas N; Escorcia-Gutierrez J; Gamarra M; Muhammad K Comput Biol Med; 2024 May; 174():108146. PubMed ID: 38608320 [TBL] [Abstract][Full Text] [Related]
7. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine. Ravikumar S Artif Cells Nanomed Biotechnol; 2016 May; 44(3):985-9. PubMed ID: 25707440 [TBL] [Abstract][Full Text] [Related]
8. White blood cell segmentation by color-space-based k-means clustering. Zhang C; Xiao X; Li X; Chen YJ; Zhen W; Chang J; Zheng C; Liu Z Sensors (Basel); 2014 Sep; 14(9):16128-47. PubMed ID: 25256107 [TBL] [Abstract][Full Text] [Related]
9. Nucleus segmentation of white blood cells in blood smear images by modeling the pixels' intensities as a set of three Gaussian distributions. Garcia-Lamont F; Lopez-Chau A; Cervantes J; Ruiz S Med Biol Eng Comput; 2024 Aug; 62(8):2371-2388. PubMed ID: 38584206 [TBL] [Abstract][Full Text] [Related]
10. Development of a Robust Algorithm for Detection of Nuclei and Classification of White Blood Cells in Peripheral Blood Smear Images. Hegde RB; Prasad K; Hebbar H; Singh BMK J Med Syst; 2018 May; 42(6):110. PubMed ID: 29721616 [TBL] [Abstract][Full Text] [Related]
11. Threshold estimation based on local minima for nucleus and cytoplasm segmentation. Mayala S; Haugsøen JB BMC Med Imaging; 2022 Apr; 22(1):77. PubMed ID: 35473495 [TBL] [Abstract][Full Text] [Related]
12. Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism. Chen H; Liu J; Hua C; Feng J; Pang B; Cao D; Li C BMC Bioinformatics; 2022 Jul; 23(1):282. PubMed ID: 35840897 [TBL] [Abstract][Full Text] [Related]
13. A novel white blood cells segmentation algorithm based on adaptive neutrosophic similarity score. Shahin AI; Guo Y; Amin KM; Sharawi AA Health Inf Sci Syst; 2018 Dec; 6(1):1. PubMed ID: 29279774 [TBL] [Abstract][Full Text] [Related]
14. White blood cells identification system based on convolutional deep neural learning networks. Shahin AI; Guo Y; Amin KM; Sharawi AA Comput Methods Programs Biomed; 2019 Jan; 168():69-80. PubMed ID: 29173802 [TBL] [Abstract][Full Text] [Related]
15. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm. Kouzehkanan ZM; Saghari S; Tavakoli S; Rostami P; Abaszadeh M; Mirzadeh F; Satlsar ES; Gheidishahran M; Gorgi F; Mohammadi S; Hosseini R Sci Rep; 2022 Jan; 12(1):1123. PubMed ID: 35064165 [TBL] [Abstract][Full Text] [Related]
16. Segmentation, feature extraction and classification of leukocytes leveraging neural networks, a comparative study. Fang T; Huang X; Chen X; Chen D; Wang J; Chen J Cytometry A; 2024 Jul; 105(7):536-546. PubMed ID: 38420862 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive data analysis of white blood cells with classification and segmentation by using deep learning approaches. Özcan ŞN; Uyar T; Karayeğen G Cytometry A; 2024 Jul; 105(7):501-520. PubMed ID: 38563259 [TBL] [Abstract][Full Text] [Related]
18. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Acharya V; Kumar P Med Biol Eng Comput; 2019 Aug; 57(8):1783-1811. PubMed ID: 31201595 [TBL] [Abstract][Full Text] [Related]
19. Classification of white blood cells (leucocytes) from blood smear imagery using machine and deep learning models: A global scoping review. Asghar R; Kumar S; Shaukat A; Hynds P PLoS One; 2024; 19(6):e0292026. PubMed ID: 38885231 [TBL] [Abstract][Full Text] [Related]
20. Nucleus and cytoplasm-based segmentation and actor-critic neural network for acute lymphocytic leukaemia detection in single cell blood smear images. Jha KK; Dutta HS Med Biol Eng Comput; 2020 Jan; 58(1):171-186. PubMed ID: 31811554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]