These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 34593930)
1. Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department. Lee JT; Hsieh CC; Lin CH; Lin YJ; Kao CY Sci Rep; 2021 Sep; 11(1):19472. PubMed ID: 34593930 [TBL] [Abstract][Full Text] [Related]
2. Emergency department triage prediction of clinical outcomes using machine learning models. Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206 [TBL] [Abstract][Full Text] [Related]
4. Patient stratification based on the risk of severe illness in emergency departments through collaborative machine learning models. Chen JY; Hsieh CC; Lee JT; Lin CH; Kao CY Am J Emerg Med; 2024 Aug; 82():142-152. PubMed ID: 38908339 [TBL] [Abstract][Full Text] [Related]
5. Comparing resource use between paediatric emergency department visits by triage level. Samuels-Kalow ME; Niedzwiecki M; Friedman AB; Sokolove PE; Hsia RY Emerg Med J; 2018 Nov; 35(11):681-684. PubMed ID: 30181161 [TBL] [Abstract][Full Text] [Related]
6. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making. Rendell K; Koprinska I; Kyme A; Ebker-White AA; Dinh MM Emerg Med Australas; 2019 Jun; 31(3):429-435. PubMed ID: 30469164 [TBL] [Abstract][Full Text] [Related]
7. Early prediction of hospital admission for emergency department patients: a comparison between patients younger or older than 70 years. Lucke JA; de Gelder J; Clarijs F; Heringhaus C; de Craen AJM; Fogteloo AJ; Blauw GJ; Groot B; Mooijaart SP Emerg Med J; 2018 Jan; 35(1):18-27. PubMed ID: 28814479 [TBL] [Abstract][Full Text] [Related]
8. A Gradient Boosting Machine Learning Model for Predicting Early Mortality in the Emergency Department Triage: Devising a Nine-Point Triage Score. Klug M; Barash Y; Bechler S; Resheff YS; Tron T; Ironi A; Soffer S; Zimlichman E; Klang E J Gen Intern Med; 2020 Jan; 35(1):220-227. PubMed ID: 31677104 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based prediction of critical illness in children visiting the emergency department. Hwang S; Lee B PLoS One; 2022; 17(2):e0264184. PubMed ID: 35176113 [TBL] [Abstract][Full Text] [Related]
10. Predicting hospital admission at the emergency department triage: A novel prediction model. Parker CA; Liu N; Wu SX; Shen Y; Lam SSW; Ong MEH Am J Emerg Med; 2019 Aug; 37(8):1498-1504. PubMed ID: 30413365 [TBL] [Abstract][Full Text] [Related]
11. The impact of emergency department crowding on admission decisions and patient outcomes. Ouyang H; Wang J; Sun Z; Lang E Am J Emerg Med; 2022 Jan; 51():163-168. PubMed ID: 34741995 [TBL] [Abstract][Full Text] [Related]
12. A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage. Patel SJ; Chamberlain DB; Chamberlain JM Acad Emerg Med; 2018 Dec; 25(12):1463-1470. PubMed ID: 30382605 [TBL] [Abstract][Full Text] [Related]
13. Promoting head CT exams in the emergency department triage using a machine learning model. Klang E; Barash Y; Soffer S; Bechler S; Resheff YS; Granot T; Shahar M; Klug M; Guralnik G; Zimlichman E; Konen E Neuroradiology; 2020 Feb; 62(2):153-160. PubMed ID: 31598737 [TBL] [Abstract][Full Text] [Related]
14. Predicting hospital admissions at emergency department triage using routine administrative data. Sun Y; Heng BH; Tay SY; Seow E Acad Emerg Med; 2011 Aug; 18(8):844-50. PubMed ID: 21843220 [TBL] [Abstract][Full Text] [Related]
15. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
16. The effects of emergency department crowding on triage and hospital admission decisions. Chen W; Linthicum B; Argon NT; Bohrmann T; Lopiano K; Mehrotra A; Travers D; Ziya S Am J Emerg Med; 2020 Apr; 38(4):774-779. PubMed ID: 31288959 [TBL] [Abstract][Full Text] [Related]
17. Rapid triage for COVID-19 using routine clinical data for patients attending hospital: development and prospective validation of an artificial intelligence screening test. Soltan AAS; Kouchaki S; Zhu T; Kiyasseh D; Taylor T; Hussain ZB; Peto T; Brent AJ; Eyre DW; Clifton DA Lancet Digit Health; 2021 Feb; 3(2):e78-e87. PubMed ID: 33509388 [TBL] [Abstract][Full Text] [Related]
18. Development and Assessment of an Interpretable Machine Learning Triage Tool for Estimating Mortality After Emergency Admissions. Xie F; Ong MEH; Liew JNMH; Tan KBK; Ho AFW; Nadarajan GD; Low LL; Kwan YH; Goldstein BA; Matchar DB; Chakraborty B; Liu N JAMA Netw Open; 2021 Aug; 4(8):e2118467. PubMed ID: 34448870 [TBL] [Abstract][Full Text] [Related]
19. A clinical prediction model to identify children at risk for revisits with serious illness to the emergency department: A prospective multicentre observational study. Nijman RG; Borensztajn DH; Zachariasse JM; Hajema C; Freitas P; Greber-Platzer S; Smit FJ; Alves CF; van der Lei J; Steyerberg EW; Maconochie IK; Moll HA PLoS One; 2021; 16(7):e0254366. PubMed ID: 34264983 [TBL] [Abstract][Full Text] [Related]
20. Machine learning for developing a prediction model of hospital admission of emergency department patients: Hype or hope? De Hond A; Raven W; Schinkelshoek L; Gaakeer M; Ter Avest E; Sir O; Lameijer H; Hessels RA; Reijnen R; De Jonge E; Steyerberg E; Nickel CH; De Groot B Int J Med Inform; 2021 Aug; 152():104496. PubMed ID: 34020171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]