These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34593930)
21. Machine learning for developing a prediction model of hospital admission of emergency department patients: Hype or hope? De Hond A; Raven W; Schinkelshoek L; Gaakeer M; Ter Avest E; Sir O; Lameijer H; Hessels RA; Reijnen R; De Jonge E; Steyerberg E; Nickel CH; De Groot B Int J Med Inform; 2021 Aug; 152():104496. PubMed ID: 34020171 [TBL] [Abstract][Full Text] [Related]
22. A clinical prediction model to identify children at risk for revisits with serious illness to the emergency department: A prospective multicentre observational study. Nijman RG; Borensztajn DH; Zachariasse JM; Hajema C; Freitas P; Greber-Platzer S; Smit FJ; Alves CF; van der Lei J; Steyerberg EW; Maconochie IK; Moll HA PLoS One; 2021; 16(7):e0254366. PubMed ID: 34264983 [TBL] [Abstract][Full Text] [Related]
23. Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach. Klang E; Kummer BR; Dangayach NS; Zhong A; Kia MA; Timsina P; Cossentino I; Costa AB; Levin MA; Oermann EK Sci Rep; 2021 Jan; 11(1):1381. PubMed ID: 33446890 [TBL] [Abstract][Full Text] [Related]
24. Can emergency department nurses performing triage predict the need for admission? Beardsell I; Robinson S Emerg Med J; 2011 Nov; 28(11):959-62. PubMed ID: 20961928 [TBL] [Abstract][Full Text] [Related]
25. Criticality and clinical department prediction of ED patients using machine learning based on heterogeneous medical data. Xiao Y; Zhang J; Chi C; Ma Y; Song A Comput Biol Med; 2023 Oct; 165():107390. PubMed ID: 37659113 [TBL] [Abstract][Full Text] [Related]
27. Performance of the Manchester triage system in older emergency department patients: a retrospective cohort study. Brouns SHA; Mignot-Evers L; Derkx F; Lambooij SL; Dieleman JP; Haak HR BMC Emerg Med; 2019 Jan; 19(1):3. PubMed ID: 30612552 [TBL] [Abstract][Full Text] [Related]
28. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables. Zlotnik A; Alfaro MC; Pérez MC; Gallardo-Antolín A; Martínez JM Comput Inform Nurs; 2016 May; 34(5):224-30. PubMed ID: 26974710 [TBL] [Abstract][Full Text] [Related]
29. The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using retrospective state-wide data from New South Wales, Australia. Dinh MM; Russell SB; Bein KJ; Rogers K; Muscatello D; Paoloni R; Hayman J; Chalkley DR; Ivers R BMC Emerg Med; 2016 Dec; 16(1):46. PubMed ID: 27912757 [TBL] [Abstract][Full Text] [Related]
30. An Artificial Intelligence Model for Predicting Trauma Mortality Among Emergency Department Patients in South Korea: Retrospective Cohort Study. Lee S; Kang WS; Kim DW; Seo SH; Kim J; Jeong ST; Yon DK; Lee J J Med Internet Res; 2023 Aug; 25():e49283. PubMed ID: 37642984 [TBL] [Abstract][Full Text] [Related]
31. Developing machine learning models to personalize care levels among emergency room patients for hospital admission. Nguyen M; Corbin CK; Eulalio T; Ostberg NP; Machiraju G; Marafino BJ; Baiocchi M; Rose C; Chen JH J Am Med Inform Assoc; 2021 Oct; 28(11):2423-2432. PubMed ID: 34402507 [TBL] [Abstract][Full Text] [Related]
32. Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing. Fernandes M; Mendes R; Vieira SM; Leite F; Palos C; Johnson A; Finkelstein S; Horng S; Celi LA PLoS One; 2020; 15(4):e0230876. PubMed ID: 32240233 [TBL] [Abstract][Full Text] [Related]
33. A Novel Deep Learning-Based System for Triage in the Emergency Department Using Electronic Medical Records: Retrospective Cohort Study. Yao LH; Leung KC; Tsai CL; Huang CH; Fu LC J Med Internet Res; 2021 Dec; 23(12):e27008. PubMed ID: 34958305 [TBL] [Abstract][Full Text] [Related]
34. Predictive factors for hospitalization of nonurgent patients in the emergency department. Ng CJ; Liao PJ; Chang YC; Kuan JT; Chen JC; Hsu KH Medicine (Baltimore); 2016 Jun; 95(26):e4053. PubMed ID: 27368040 [TBL] [Abstract][Full Text] [Related]
35. Predicting hospital admission at emergency department triage using machine learning. Hong WS; Haimovich AD; Taylor RA PLoS One; 2018; 13(7):e0201016. PubMed ID: 30028888 [TBL] [Abstract][Full Text] [Related]
36. Criticality index conducted in pediatric emergency department triage. Heyming TW; Knudsen-Robbins C; Feaster W; Ehwerhemuepha L Am J Emerg Med; 2021 Oct; 48():209-217. PubMed ID: 33975133 [TBL] [Abstract][Full Text] [Related]
37. Emergency department triage of patients infected with HIV. Haukoos JS; Witt MD; Zeumer CM; Lee TJ; Halamka JD; Lewis RJ Acad Emerg Med; 2002 Sep; 9(9):880-8. PubMed ID: 12208676 [TBL] [Abstract][Full Text] [Related]
38. Over-triage occurs when considering the patient's pain in Korean Triage and Acuity Scale (KTAS). Lee JH; Park YS; Park IC; Lee HS; Kim JH; Park JM; Chung SP; Kim MJ PLoS One; 2019; 14(5):e0216519. PubMed ID: 31071132 [TBL] [Abstract][Full Text] [Related]
39. Machine learning-based triage to identify low-severity patients with a short discharge length of stay in emergency department. Chang YH; Shih HM; Wu JE; Huang FW; Chen WK; Chen DM; Chung YT; Wang CCN BMC Emerg Med; 2022 May; 22(1):88. PubMed ID: 35596154 [TBL] [Abstract][Full Text] [Related]
40. Validation of deep-learning-based triage and acuity score using a large national dataset. Kwon JM; Lee Y; Lee Y; Lee S; Park H; Park J PLoS One; 2018; 13(10):e0205836. PubMed ID: 30321231 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]