These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34593939)

  • 1. Spatiotemporal development of coexisting wave domains of Rho activity in the cell cortex.
    Hladyshau S; Kho M; Nie S; Tsygankov D
    Sci Rep; 2021 Sep; 11(1):19512. PubMed ID: 34593939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium.
    Bement WM; Leda M; Moe AM; Kita AM; Larson ME; Golding AE; Pfeuti C; Su KC; Miller AL; Goryachev AB; von Dassow G
    Nat Cell Biol; 2015 Nov; 17(11):1471-83. PubMed ID: 26479320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4.
    Michaud A; Leda M; Swider ZT; Kim S; He J; Landino J; Valley JR; Huisken J; Goryachev AB; von Dassow G; Bement WM
    J Cell Biol; 2022 Aug; 221(8):. PubMed ID: 35708547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to make a static cytokinetic furrow out of traveling excitable waves.
    Goryachev AB; Leda M; Miller AL; von Dassow G; Bement WM
    Small GTPases; 2016 Apr; 7(2):65-70. PubMed ID: 27070950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological braiding and virtual particles on the cell membrane.
    Liu J; Totz JF; Miller PW; Hastewell AD; Chao YC; Dunkel J; Fakhri N
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho and F-actin self-organize within an artificial cell cortex.
    Landino J; Leda M; Michaud A; Swider ZT; Prom M; Field CM; Bement WM; Vecchiarelli AG; Goryachev AB; Miller AL
    Curr Biol; 2021 Dec; 31(24):5613-5621.e5. PubMed ID: 34739819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lapse confocal imaging of calcium dynamics in starfish embryos.
    Stricker SA
    Dev Biol; 1995 Aug; 170(2):496-518. PubMed ID: 7649379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning of the cell cortex by Rho GTPases.
    Bement WM; Goryachev AB; Miller AL; von Dassow G
    Nat Rev Mol Cell Biol; 2024 Apr; 25(4):290-308. PubMed ID: 38172611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rho GTPases and their effector proteins.
    Bishop AL; Hall A
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):241-55. PubMed ID: 10816416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour.
    Holmes WR; Carlsson AE; Edelstein-Keshet L
    Phys Biol; 2012 Aug; 9(4):046005. PubMed ID: 22785332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic surface patterns on cells.
    Chatterjee M; Sain A
    J Chem Phys; 2022 Feb; 156(8):084117. PubMed ID: 35232201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors.
    Snyder JT; Worthylake DK; Rossman KL; Betts L; Pruitt WM; Siderovski DP; Der CJ; Sondek J
    Nat Struct Biol; 2002 Jun; 9(6):468-75. PubMed ID: 12006984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal Coordination of Rac1 and Cdc42 at the Whole Cell Level during Cell Ruffling.
    Hladyshau S; Stoop JP; Kamada K; Nie S; Tsygankov D
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Rho GTPase signal treadmill backs a contractile array.
    Burkel BM; Benink HA; Vaughan EM; von Dassow G; Bement WM
    Dev Cell; 2012 Aug; 23(2):384-96. PubMed ID: 22819338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk-dependent cortical patterning of Rho GTPases during cell repair.
    Moe A; Holmes W; Golding AE; Zola J; Swider ZT; Edelstein-Keshet L; Bement W
    Mol Biol Cell; 2021 Aug; 32(16):1417-1432. PubMed ID: 34133216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes.
    Swartz SZ; Tan TH; Perillo M; Fakhri N; Wessel GM; Wikramanayake AH; Cheeseman IM
    Curr Biol; 2021 Dec; 31(24):5633-5641.e4. PubMed ID: 34739818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton.
    Singh V; Davidson AC; Hume PJ; Humphreys D; Koronakis V
    Small GTPases; 2019 Nov; 10(6):411-418. PubMed ID: 28524754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes.
    Bun P; Dmitrieff S; Belmonte JM; Nédélec FJ; Lénárt P
    Elife; 2018 Jan; 7():. PubMed ID: 29350616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain.
    Tong Y; Chugha P; Hota PK; Alviani RS; Li M; Tempel W; Shen L; Park HW; Buck M
    J Biol Chem; 2007 Dec; 282(51):37215-24. PubMed ID: 17916560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of the Rho GTPase signaling.
    Hakoshima T; Shimizu T; Maesaki R
    J Biochem; 2003 Sep; 134(3):327-31. PubMed ID: 14561717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.