BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34594181)

  • 1. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation.
    Zang Y; Wang P; Zha F; Guo W; Zheng C; Sun L
    Front Neurorobot; 2023; 17():1320251. PubMed ID: 38023454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-robot skill transmission for mobile robot via learning by demonstration.
    Li J; Wang J; Wang S; Yang C
    Neural Comput Appl; 2021 Sep; ():1-11. PubMed ID: 34566265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Probabilistic Movement Primitives in Analyzing Human Motion Differences Under Transcranial Current Stimulation.
    Xue H; Herzog R; Berger TM; Bäumer T; Weissbach A; Rueckert E
    Front Robot AI; 2021; 8():721890. PubMed ID: 34595209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient.
    Cao J; Liu W; Liu Y; Yang J
    Front Neurorobot; 2020; 14():21. PubMed ID: 32372940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-modal self-attention mechanism for controlling robot volleyball motion.
    Wang M; Liang Z
    Front Neurorobot; 2023; 17():1288463. PubMed ID: 38023451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction-Based Human-Robot Collaboration in Assembly Tasks Using a Learning from Demonstration Model.
    Zhang Z; Peng G; Wang W; Chen Y; Jia Y; Liu S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action Generation Adapted to Low-Level and High-Level Robot-Object Interaction States.
    Maestre C; Mukhtar G; Gonzales C; Doncieux S
    Front Neurorobot; 2019; 13():56. PubMed ID: 31396071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.