BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 34594348)

  • 1. Transition From Targeted Breeding to Mainstreaming of Biofortification Traits in Crop Improvement Programs.
    Virk PS; Andersson MS; Arcos J; Govindaraj M; Pfeiffer WH
    Front Plant Sci; 2021; 12():703990. PubMed ID: 34594348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding and adoption of biofortified crops and their nutritional impact on human health.
    Kumar S; DePauw RM; Kumar S; Kumar J; Kumar S; Pandey MP
    Ann N Y Acad Sci; 2023 Feb; 1520(1):5-19. PubMed ID: 36479674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016.
    Bouis HE; Saltzman A
    Glob Food Sec; 2017 Mar; 12():49-58. PubMed ID: 28580239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops.
    La Frano MR; de Moura FF; Boy E; Lönnerdal B; Burri BJ
    Nutr Rev; 2014 May; 72(5):289-307. PubMed ID: 24689451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming Nigerian Food Systems Through Their Backbones: Lessons From a Decade of Staple Crop Biofortification Programing.
    Birol E; Foley J; Herrington C; Misra R; Mudyahoto B; Pfeiffer W; Diressie MT; Ilona P
    Food Nutr Bull; 2023 Sep; 44(1_suppl):S14-S26. PubMed ID: 36016479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling Up Delivery of Biofortified Staple Food Crops Globally: Paths to Nourishing Millions.
    Foley JK; Michaux KD; Mudyahoto B; Kyazike L; Cherian B; Kalejaiye O; Ifeoma O; Ilona P; Reinberg C; Mavindidze D; Boy E
    Food Nutr Bull; 2021 Mar; 42(1):116-132. PubMed ID: 33593095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents.
    Senguttuvel P; G P; C J; D SR; Cn N; V J; P B; R G; J AK; Sv SP; Lv SR; As H; K S; D S; Rm S; Govindaraj M
    Front Plant Sci; 2023; 14():1138408. PubMed ID: 37332714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches.
    Wani SH; Gaikwad K; Razzaq A; Samantara K; Kumar M; Govindan V
    Mol Biol Rep; 2022 Aug; 49(8):8007-8023. PubMed ID: 35661970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K; Govindaraj M; Karthikeyan A; Shobhana VG; Warkentin TD
    Front Genet; 2020; 11():414. PubMed ID: 32547594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofortification: a new tool to reduce micronutrient malnutrition.
    Bouis HE; Hotz C; McClafferty B; Meenakshi JV; Pfeiffer WH
    Food Nutr Bull; 2011 Mar; 32(1 Suppl):S31-40. PubMed ID: 21717916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc Biofortified Rice Varieties: Challenges, Possibilities, and Progress in India.
    Sanjeeva Rao D; Neeraja CN; Madhu Babu P; Nirmala B; Suman K; Rao LVS; Surekha K; Raghu P; Longvah T; Surendra P; Kumar R; Babu VR; Voleti SR
    Front Nutr; 2020; 7():26. PubMed ID: 32318582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of CGIAR maize germplasm in Sub-Saharan Africa.
    Krishna VV; Lantican MA; Prasanna BM; Pixley K; Abdoulaye T; Menkir A; Bänziger M; Erenstein O
    Field Crops Res; 2023 Jan; 290():108756. PubMed ID: 36597471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofortification to improve food security.
    Labuschagne M
    Emerg Top Life Sci; 2023 Dec; 7(2):219-227. PubMed ID: 37962270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding.
    Velu G; Singh RP; Crespo-Herrera L; Juliana P; Dreisigacker S; Valluru R; Stangoulis J; Sohu VS; Mavi GS; Mishra VK; Balasubramaniam A; Chatrath R; Gupta V; Singh GP; Joshi AK
    Sci Rep; 2018 Sep; 8(1):13526. PubMed ID: 30201978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory acceptability of biofortified foods and food products: a systematic review.
    Huey SL; Bhargava A; Friesen VM; Konieczynski EM; Krisher JT; Mbuya MNN; Mehta NH; Monterrosa E; Nyangaresi AM; Mehta S
    Nutr Rev; 2024 Jun; 82(7):892-912. PubMed ID: 37634146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofortification of Pulse Crops: Status and Future Perspectives.
    Jha AB; Warkentin TD
    Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31935879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally.
    Welch RM
    J Nutr; 2002 Mar; 132(3):495S-499S. PubMed ID: 11880578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals.
    Mejia LA; Dary O; Boukerdenna H
    Ann N Y Acad Sci; 2017 Feb; 1390(1):47-58. PubMed ID: 27801985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.