These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34595089)

  • 1. Elaborating the Iodine/Polyiodide Equilibrium Effects in Nanoporous Carbon-based Battery Electrode via Extreme Mass Asymmetry in Hybrid Cells.
    Schranger H; Khosravi S; Fitzek H; Abbas Q
    ChemElectroChem; 2021 Aug; 8(16):3155-3160. PubMed ID: 34595089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Iodine Electrodeposition on Nanoporous Carbon Electrode Determined by EQCM, XPS and In Situ Raman Spectroscopy.
    Fitzek H; Sterrer M; Knez D; Schranger H; Sarapulova A; Dsoke S; Schroettner H; Kothleitner G; Gollas B; Abbas Q
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent and reversible solid iodine electrodeposition in nanoporous carbons.
    Prehal C; Fitzek H; Kothleitner G; Presser V; Gollas B; Freunberger SA; Abbas Q
    Nat Commun; 2020 Sep; 11(1):4838. PubMed ID: 32973214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triiodide-in-Iodine Networks Stabilized by Quaternary Ammonium Cations as Accelerants for Electrode Kinetics of Iodide Oxidation in Aqueous Media.
    Kim H; Kim KM; Ryu J; Ki S; Sohn D; Chae J; Chang J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12168-12179. PubMed ID: 35254047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of an Iodine Film on Charge-Transfer Resistance during the Electro-Oxidation of Iodide in Redox Flow Batteries.
    Jang WJ; Cha JS; Kim H; Yang JH
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6385-6393. PubMed ID: 33502159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life.
    Meng Z; Tian H; Zhang S; Yan X; Ying H; He W; Liang C; Zhang W; Hou X; Han WQ
    ACS Appl Mater Interfaces; 2018 May; 10(21):17933-17941. PubMed ID: 29738665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual Plating Battery with the Iodine/[ZnI
    Hong JJ; Zhu L; Chen C; Tang L; Jiang H; Jin B; Gallagher TC; Guo Q; Fang C; Ji X
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15910-15915. PubMed ID: 31478325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode.
    Zhao Q; Lu Y; Zhu Z; Tao Z; Chen J
    Nano Lett; 2015 Sep; 15(9):5982-7. PubMed ID: 26241461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries.
    Zhang SJ; Hao J; Li H; Zhang PF; Yin ZW; Li YY; Zhang B; Lin Z; Qiao SZ
    Adv Mater; 2022 Jun; 34(23):e2201716. PubMed ID: 35435291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR.
    Deschamps M; Gilbert E; Azais P; Raymundo-Piñero E; Ammar MR; Simon P; Massiot D; Béguin F
    Nat Mater; 2013 Apr; 12(4):351-8. PubMed ID: 23416727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti
    Hu M; Cui C; Shi C; Wu ZS; Yang J; Cheng R; Guang T; Wang H; Lu H; Wang X
    ACS Nano; 2019 Jun; 13(6):6899-6905. PubMed ID: 31100003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry.
    Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H
    Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Identification of Iodine Exchange Mechanism in Iodide Ionic Liquid.
    Thapa R; Park N
    J Phys Chem Lett; 2012 Oct; 3(20):3065-9. PubMed ID: 26292250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte.
    Salunkhe RR; Young C; Tang J; Takei T; Ide Y; Kobayashi N; Yamauchi Y
    Chem Commun (Camb); 2016 Apr; 52(26):4764-7. PubMed ID: 26928244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How chemical defects influence the charging of nanoporous carbon supercapacitors.
    Dupuis R; Valdenaire PL; Pellenq RJ; Ioannidou K
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2121945119. PubMed ID: 35439053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.