These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34595261)

  • 1. Trimolecular Fluorescence Complementation (TriFC) Assay for Direct Visualization of RNA-Protein Interaction
    Seo JS; Chua NH
    Bio Protoc; 2017 Oct; 7(20):e2579. PubMed ID: 34595261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimolecular Fluorescence Complementation (TriFC) Assay for Visualization of RNA-Protein Interaction in Plants.
    Seo JS; Chua NH
    Methods Mol Biol; 2019; 1933():297-303. PubMed ID: 30945194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization and translocation of ternary Calcineurin-A/Calcineurin-B/Calmodulin-2 protein complexes by dual-color trimolecular fluorescence complementation.
    Offenborn JN; Waadt R; Kudla J
    New Phytol; 2015 Oct; 208(1):269-79. PubMed ID: 25919910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimolecular Fluorescence Complementation (BiFC) Assay for Direct Visualization of Protein-Protein Interaction
    Lai HT; Chiang CM
    Bio Protoc; 2013; 3(20):. PubMed ID: 27390756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of Transiently Expressed mRNA in Plants Using MS2.
    Peña EJ; Heinlein M
    Methods Mol Biol; 2020; 2166():103-120. PubMed ID: 32710405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System.
    Chen M; Li S; Li W; Zhang ZP; Zhang X; Zhang XE; Ge F; Cui Z
    ACS Chem Biol; 2021 Jun; 16(6):1003-1010. PubMed ID: 34009928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Planta Visualization of Protein Interactions Using Bimolecular Fluorescence Complementation (BiFC).
    Waadt R; Kudla J
    CSH Protoc; 2008 Apr; 2008():pdb.prot4995. PubMed ID: 21356813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems.
    Han Y; Wang S; Zhang Z; Ma X; Li W; Zhang X; Deng J; Wei H; Li Z; Zhang XE; Cui Z
    Nucleic Acids Res; 2014 Jul; 42(13):e103. PubMed ID: 24813442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimolecular Fluorescence Complementation (BiFC) in Host-Virus Interactions.
    Silva FDA; Machado JPB; Dos Reis PAB
    Methods Mol Biol; 2024; 2724():211-223. PubMed ID: 37987908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein interactions visualized by bimolecular fluorescence complementation in tobacco protoplasts and leaves.
    Schweiger R; Schwenkert S
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo RNA Visualization in Plants Using MS2 Tagging.
    Peña EJ; Heinlein M
    Methods Enzymol; 2016; 572():105-22. PubMed ID: 27241752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of mRNA-protein interactions in live cells using novel mCherry trimolecular fluorescence complementation systems.
    Yin J; Zhu D; Zhang Z; Wang W; Fan J; Men D; Deng J; Wei H; Zhang XE; Cui Z
    PLoS One; 2013; 8(11):e80851. PubMed ID: 24260494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of RMRs (Receptor Membrane RING-H2) Dimerization in Nicotiana benthamiana Leaves Using a Bimolecular Fluorescence Complementation (BiFC) Assay.
    Occhialini A
    Methods Mol Biol; 2018; 1789():177-194. PubMed ID: 29916080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing of biomolecular interactions using fluorescence complementing systems in living cells.
    Zhang XE; Cui Z; Wang D
    Biosens Bioelectron; 2016 Feb; 76():243-50. PubMed ID: 26316254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Determination and Subcellular Localization of Protein-Protein Interactions in Plant Cells Using Bimolecular Fluorescence Complementation Assay.
    Tang Z; Bernards MA; Wang A
    Methods Mol Biol; 2022; 2400():75-85. PubMed ID: 34905192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
    Kerppola TK
    Methods Cell Biol; 2008; 85():431-70. PubMed ID: 18155474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations.
    Waadt R; Schlücking K; Schroeder JI; Kudla J
    Methods Mol Biol; 2014; 1062():629-58. PubMed ID: 24057390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells.
    Kerppola TK
    Nat Protoc; 2006; 1(3):1278-86. PubMed ID: 17406412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1.
    Milev MP; Brown CM; Mouland AJ
    Retrovirology; 2010 May; 7():41. PubMed ID: 20459747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta.
    Citovsky V; Lee LY; Vyas S; Glick E; Chen MH; Vainstein A; Gafni Y; Gelvin SB; Tzfira T
    J Mol Biol; 2006 Oct; 362(5):1120-31. PubMed ID: 16949607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.