These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34595813)
1. Multiple-Site Concerted Proton-Electron Transfer in a Manganese-Based Complete Functional Model for [FeFe]-Hydrogenase. He S; Huang F; Wu Q; Zhang P; Xiong Y; Yang J; Zhang R; Wang F; Chen L; Liu TL; Li F Angew Chem Int Ed Engl; 2021 Dec; 60(49):25839-25845. PubMed ID: 34595813 [TBL] [Abstract][Full Text] [Related]
2. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related]
3. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Wang N; Wang M; Chen L; Sun L Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers. Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812 [TBL] [Abstract][Full Text] [Related]
5. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]-Hydrogenase. Pan HJ; Hu X Angew Chem Int Ed Engl; 2020 Mar; 59(12):4942-4946. PubMed ID: 31820844 [TBL] [Abstract][Full Text] [Related]
7. Properties of the iron-sulfur cluster electron transfer relay in an [FeFe]-hydrogenase that is tuned for H Kisgeropoulos EC; Artz JH; Blahut M; Peters JW; King PW; Mulder DW J Biol Chem; 2024 Jun; 300(6):107292. PubMed ID: 38636659 [TBL] [Abstract][Full Text] [Related]
8. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2'-bipyridyl ligand. Roy S; Groy TL; Jones AK Dalton Trans; 2013 Mar; 42(11):3843-53. PubMed ID: 23307026 [TBL] [Abstract][Full Text] [Related]
10. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. Senger M; Eichmann V; Laun K; Duan J; Wittkamp F; Knör G; Apfel UP; Happe T; Winkler M; Heberle J; Stripp ST J Am Chem Soc; 2019 Oct; 141(43):17394-17403. PubMed ID: 31580662 [TBL] [Abstract][Full Text] [Related]
11. The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Lampret O; Duan J; Hofmann E; Winkler M; Armstrong FA; Happe T Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20520-20529. PubMed ID: 32796105 [TBL] [Abstract][Full Text] [Related]
12. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Pan HJ; Huang G; Wodrich MD; Tirani FF; Ataka K; Shima S; Hu X Nat Chem; 2019 Jul; 11(7):669-675. PubMed ID: 31110253 [TBL] [Abstract][Full Text] [Related]
13. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Winkler M; Esselborn J; Happe T Biochim Biophys Acta; 2013; 1827(8-9):974-85. PubMed ID: 23507618 [TBL] [Abstract][Full Text] [Related]
14. Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases. Rodríguez-Maciá P; Pawlak K; Rüdiger O; Reijerse EJ; Lubitz W; Birrell JA J Am Chem Soc; 2017 Oct; 139(42):15122-15134. PubMed ID: 28910086 [TBL] [Abstract][Full Text] [Related]
15. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175 [TBL] [Abstract][Full Text] [Related]
16. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related]
17. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S; Fan J; Sun S; Song F; Peng X; Duan Q; Jiang D; Liang Q Dalton Trans; 2012 Oct; 41(39):12064-74. PubMed ID: 22911248 [TBL] [Abstract][Full Text] [Related]
18. Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. Liang WJ; Wang F; Wen M; Jian JX; Wang XZ; Chen B; Tung CH; Wu LZ Chemistry; 2015 Feb; 21(8):3187-92. PubMed ID: 25572459 [TBL] [Abstract][Full Text] [Related]
19. Phonon-assisted electron-proton transfer in [FeFe] hydrogenases: Topological role of clusters. Chalopin Y; Cramer SP; Arragain S Biophys J; 2023 Apr; 122(8):1557-1567. PubMed ID: 36960530 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase. Sode O; Voth GA J Chem Phys; 2014 Dec; 141(22):22D527. PubMed ID: 25494798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]