These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34595813)
21. Synthesis, structures and electrochemistry studies of 2Fe2S-Fe(ii)(S-2N)(2) models for H-cluster of [FeFe]-hydrogenase. Hu MQ; Wen HM; Ma CB; Li N; Yan QY; Chen H; Chen CN Dalton Trans; 2010 Oct; 39(40):9484-6. PubMed ID: 20830399 [TBL] [Abstract][Full Text] [Related]
22. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function. Kerns SA; Rose MJ Acc Chem Res; 2020 Aug; 53(8):1637-1647. PubMed ID: 32786339 [TBL] [Abstract][Full Text] [Related]
23. Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Duan J; Senger M; Esselborn J; Engelbrecht V; Wittkamp F; Apfel UP; Hofmann E; Stripp ST; Happe T; Winkler M Nat Commun; 2018 Nov; 9(1):4726. PubMed ID: 30413719 [TBL] [Abstract][Full Text] [Related]
24. Multielectron-transfer templates via consecutive two-electron transformations: iron-sulfur complexes relevant to biological enzymes. Chen L; Wang M; Gloaguen F; Zheng D; Zhang P; Sun L Chemistry; 2012 Oct; 18(44):13968-73. PubMed ID: 23015459 [TBL] [Abstract][Full Text] [Related]
25. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Wang M; Chen L; Li X; Sun L Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599 [TBL] [Abstract][Full Text] [Related]
26. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase. Mulder DW; Guo Y; Ratzloff MW; King PW J Am Chem Soc; 2017 Jan; 139(1):83-86. PubMed ID: 27973768 [TBL] [Abstract][Full Text] [Related]
27. Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases. Sommer C; Adamska-Venkatesh A; Pawlak K; Birrell JA; Rüdiger O; Reijerse EJ; Lubitz W J Am Chem Soc; 2017 Feb; 139(4):1440-1443. PubMed ID: 28075576 [TBL] [Abstract][Full Text] [Related]
28. Aza- and oxadithiolates are probable proton relays in functional models for the [FeFe]-hydrogenases. Barton BE; Olsen MT; Rauchfuss TB J Am Chem Soc; 2008 Dec; 130(50):16834-5. PubMed ID: 19053433 [TBL] [Abstract][Full Text] [Related]
29. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Laun K; Baranova I; Duan J; Kertess L; Wittkamp F; Apfel UP; Happe T; Senger M; Stripp ST Dalton Trans; 2021 Mar; 50(10):3641-3650. PubMed ID: 33629081 [TBL] [Abstract][Full Text] [Related]
30. Proton transport in Clostridium pasteurianum [FeFe] hydrogenase I: a computational study. Long H; King PW; Chang CH J Phys Chem B; 2014 Jan; 118(4):890-900. PubMed ID: 24405487 [TBL] [Abstract][Full Text] [Related]
31. [FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. Brezinski WP; Karayilan M; Clary KE; Pavlopoulos NG; Li S; Fu L; Matyjaszewski K; Evans DH; Glass RS; Lichtenberger DL; Pyun J Angew Chem Int Ed Engl; 2018 Sep; 57(37):11898-11902. PubMed ID: 30053346 [TBL] [Abstract][Full Text] [Related]
32. Linear Scaling Relationships to Predict p Puthenkalathil RC; Ensing B Inorg Chem; 2022 Jan; 61(1):113-120. PubMed ID: 34955025 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. Cornish AJ; Gärtner K; Yang H; Peters JW; Hegg EL J Biol Chem; 2011 Nov; 286(44):38341-38347. PubMed ID: 21900241 [TBL] [Abstract][Full Text] [Related]
34. A theoretical study on the enhancement of functionally relevant electron transfers in biomimetic models of [FeFe]-hydrogenases. Greco C; De Gioia L Inorg Chem; 2011 Aug; 50(15):6987-95. PubMed ID: 21728321 [TBL] [Abstract][Full Text] [Related]
35. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö; Stein M; Kaur-Ghumaan S; Reijerse EJ; Ott S; Lubitz W Chemistry; 2013 Oct; 19(43):14566-72. PubMed ID: 24038239 [TBL] [Abstract][Full Text] [Related]
36. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
37. A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. Wang HY; Si G; Cao WN; Wang WG; Li ZJ; Wang F; Tung CH; Wu LZ Chem Commun (Camb); 2011 Aug; 47(29):8406-8. PubMed ID: 21701763 [TBL] [Abstract][Full Text] [Related]
38. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST; Mebs S; Haumann M Inorg Chem; 2020 Nov; 59(22):16474-16488. PubMed ID: 33147959 [TBL] [Abstract][Full Text] [Related]
39. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction. Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087 [TBL] [Abstract][Full Text] [Related]
40. Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. Silakov A; Kamp C; Reijerse E; Happe T; Lubitz W Biochemistry; 2009 Aug; 48(33):7780-6. PubMed ID: 19634879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]