BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34595823)

  • 1. Mitochondrial F
    Rieger B; Arroum T; Borowski MT; Villalta J; Busch KB
    EMBO Rep; 2021 Dec; 22(12):e52727. PubMed ID: 34595823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential.
    Romero-Carramiñana I; Esparza-Moltó PB; Domínguez-Zorita S; Nuevo-Tapioles C; Cuezva JM
    Commun Biol; 2023 Aug; 6(1):836. PubMed ID: 37573449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatio-temporal organization of mitochondrial F
    Salewskij K; Rieger B; Hager F; Arroum T; Duwe P; Villalta J; Colgiati S; Richter CP; Psathaki OE; Enriquez JA; Dellmann T; Busch KB
    Biochim Biophys Acta Bioenerg; 2020 Jan; 1861(1):148091. PubMed ID: 31669489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of mitochondrial K
    Cortassa S; Aon MA; Juhaszova M; Kobrinsky E; Zorov DB; Sollott SJ
    J Mol Cell Cardiol; 2022 Apr; 165():9-18. PubMed ID: 34954465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes.
    Rieger B; Junge W; Busch KB
    Nat Commun; 2014; 5():3103. PubMed ID: 24476986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for DeltapH surface component (DeltapH(S)) of proton motive force in ATP synthesis of mitochondria.
    Xiong JW; Zhu L; Jiao X; Liu SS
    Biochim Biophys Acta; 2010 Mar; 1800(3):213-22. PubMed ID: 19695309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. F
    Singh V
    Mol Biol Rep; 2023 Apr; 50(4):3849-3862. PubMed ID: 36715790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibitor protein IF
    Carroll J; Watt IN; Wright CJ; Ding S; Fearnley IM; Walker JE
    J Biol Chem; 2024 Mar; 300(3):105690. PubMed ID: 38280428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of generation of local ΔpH in mitochondria and bacteria.
    Medvedev ES; Stuchebrukhov AA
    Biochemistry (Mosc); 2014 May; 79(5):425-34. PubMed ID: 24954593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Mechanism of Sustained Mitochondrial Membrane Potential Without Functioning Complex IV.
    Takahashi E; Yamaoka Y
    Adv Exp Med Biol; 2022; 1395():367-372. PubMed ID: 36527664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP.
    Nesci S; Ventrella V; Trombetti F; Pirini M; Pagliarani A
    J Bioenerg Biomembr; 2013 Jun; 45(3):289-300. PubMed ID: 23456170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V.
    Forkink M; Manjeri GR; Liemburg-Apers DC; Nibbeling E; Blanchard M; Wojtala A; Smeitink JA; Wieckowski MR; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2014 Aug; 1837(8):1247-56. PubMed ID: 24769419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP Synthase K
    Juhaszova M; Kobrinsky E; Zorov DB; Nuss HB; Yaniv Y; Fishbein KW; de Cabo R; Montoliu L; Gabelli SB; Aon MA; Cortassa S; Sollott SJ
    Function (Oxf); 2022; 3(2):zqac001. PubMed ID: 35187492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel.
    Bahri H; Buratto J; Rojo M; Dompierre JP; Salin B; Blancard C; Cuvellier S; Rose M; Ben Ammar Elgaaied A; Tetaud E; di Rago JP; Devin A; Duvezin-Caubet S
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(4):118942. PubMed ID: 33359711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing actual contribution of IF1, inhibitor of mitochondrial FoF1, to ATP homeostasis, cell growth, mitochondrial morphology, and cell viability.
    Fujikawa M; Imamura H; Nakamura J; Yoshida M
    J Biol Chem; 2012 May; 287(22):18781-7. PubMed ID: 22493494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase.
    Venard R; Brèthes D; Giraud MF; Vaillier J; Velours J; Haraux F
    Biochemistry; 2003 Jun; 42(24):7626-36. PubMed ID: 12809520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IF1 Promotes Cellular Proliferation and Inhibits Oxidative Phosphorylation in Mouse Embryonic Fibroblasts under Normoxia and Hypoxia.
    Lauterboeck L; Kang SW; White D; Bao R; Mobasheran P; Yang Q
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low energy costs of F1Fo ATP synthase reversal in colon carcinoma cells deficient in mitochondrial complex IV.
    Zhdanov AV; Andreev DE; Baranov PV; Papkovsky DB
    Free Radic Biol Med; 2017 May; 106():184-195. PubMed ID: 28189850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.