BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34596205)

  • 1. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications.
    Liang X; Liu Y; Wen K; Jiang W; Li Q
    J Mater Chem B; 2021 Sep; 9(37):7597-7607. PubMed ID: 34596205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities.
    Bilal M; Asgher M; Shah SZH; Iqbal HMN
    Int J Biol Macromol; 2019 Aug; 135():677-690. PubMed ID: 31152838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability.
    Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications.
    Dube S; Rawtani D
    Adv Colloid Interface Sci; 2021 Sep; 295():102484. PubMed ID: 34358991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance.
    Cui J; Zhao Y; Liu R; Zhong C; Jia S
    Sci Rep; 2016 Jun; 6():27928. PubMed ID: 27297609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoflowers: A New Approach of Enzyme Immobilization.
    da Costa FP; Cipolatti EP; Furigo Junior A; Oliveira Henriques R
    Chem Rec; 2022 Apr; 22(4):e202100293. PubMed ID: 35103373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites.
    Patil PD; Karvekar A; Salokhe S; Tiwari MS; Nadar SS
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132357. PubMed ID: 38772461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine.
    Shcharbin D; Halets-Bui I; Abashkin V; Dzmitruk V; Loznikova S; Odabaşı M; Acet Ö; Önal B; Özdemir N; Shcharbina N; Bryszewska M
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110354. PubMed ID: 31325775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications.
    Zhang S; Bilal M; Zdarta J; Cui J; Kumar A; Franco M; Ferreira LFR; Iqbal HMN
    Food Res Int; 2021 Feb; 140():109979. PubMed ID: 33648214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic nanomaterial-based biocatalysts.
    Lee SY; Lee J; Chang JH; Lee JH
    BMB Rep; 2011 Feb; 44(2):77-86. PubMed ID: 21345305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-inorganic nanoflowers: from design strategy to biomedical applications.
    Liu Y; Ji X; He Z
    Nanoscale; 2019 Oct; 11(37):17179-17194. PubMed ID: 31532431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization.
    Liu Y; Shao X; Kong D; Li G; Li Q
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111450. PubMed ID: 33181387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review.
    Bilal M; Ashraf SS; Cui J; Lou WY; Franco M; Mulla SI; Iqbal HMN
    Int J Biol Macromol; 2021 Jan; 166():352-373. PubMed ID: 33129906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypsin/Zn
    Wang Z; Liu P; Fang Z; Jiang H
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Industrial applications of immobilized nano-biocatalysts.
    Razzaghi M; Homaei A; Vianello F; Azad T; Sharma T; Nadda AK; Stevanato R; Bilal M; Iqbal HMN
    Bioprocess Biosyst Eng; 2022 Feb; 45(2):237-256. PubMed ID: 34596787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future.
    Jafari-Nodoushan H; Mojtabavi S; Faramarzi MA; Samadi N
    Adv Colloid Interface Sci; 2022 Nov; 309():102780. PubMed ID: 36182695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Multienzymatic Cascade Reaction System of Coimmobilized Hybrid Nanoflowers for Efficient Conversion of Starch into Gluconic Acid.
    Han J; Luo P; Wang L; Wu J; Li C; Wang Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15023-15033. PubMed ID: 32156109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical and Rapid Membrane-Based Biosensor for Phenol Using Copper/Calcium-Enzyme Hybrid Nanoflowers.
    da Costa FP; Henriques RO; Furigo Junior A
    Appl Biochem Biotechnol; 2023 Jan; 195(1):86-106. PubMed ID: 35980513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.
    Wang Z; Wang R; Geng Z; Luo X; Jia J; Pang S; Fan X; Bilal M; Cui J
    Crit Rev Biotechnol; 2024 Jun; 44(4):674-697. PubMed ID: 37032548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.