These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34596544)
1. Wasserstein Distances, Geodesics and Barycenters of Merge Trees. Pont M; Vidal J; Delon J; Tierny J IEEE Trans Vis Comput Graph; 2022 Jan; 28(1):291-301. PubMed ID: 34596544 [TBL] [Abstract][Full Text] [Related]
2. Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams). Pont M; Vidal J; Tierny J IEEE Trans Vis Comput Graph; 2023 Feb; 29(2):1573-1589. PubMed ID: 36251893 [TBL] [Abstract][Full Text] [Related]
3. Progressive Wasserstein Barycenters of Persistence Diagrams. Vidal J; Budin J; Tierny J IEEE Trans Vis Comput Graph; 2019 Aug; ():. PubMed ID: 31403427 [TBL] [Abstract][Full Text] [Related]
4. Wasserstein Dictionaries of Persistence Diagrams. Sisouk K; Delon J; Tierny J IEEE Trans Vis Comput Graph; 2024 Feb; 30(2):1638-1651. PubMed ID: 37930922 [TBL] [Abstract][Full Text] [Related]
5. Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams). Pont M; Tierny J IEEE Trans Vis Comput Graph; 2024 Sep; 30(9):6390-6406. PubMed ID: 38015696 [TBL] [Abstract][Full Text] [Related]
6. Merge Tree Geodesics and Barycenters with Path Mappings. Wetzels F; Pont M; Tierny J; Garth C IEEE Trans Vis Comput Graph; 2024 Jan; 30(1):1095-1105. PubMed ID: 37878452 [TBL] [Abstract][Full Text] [Related]
7. Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing. Lyu W; Sridharamurthy R; Phillips JM; Wang B IEEE Trans Vis Comput Graph; 2024 Sep; PP():. PubMed ID: 39264777 [TBL] [Abstract][Full Text] [Related]
8. Multisource single-cell data integration by MAW barycenter for Gaussian mixture models. Lin L; Shi W; Ye J; Li J Biometrics; 2023 Jun; 79(2):866-877. PubMed ID: 35220585 [TBL] [Abstract][Full Text] [Related]
9. An Algorithm for Constructing Principal Geodesics in Phylogenetic Treespace. Nye TM IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):304-15. PubMed ID: 26355778 [TBL] [Abstract][Full Text] [Related]
10. A Structural Average of Labeled Merge Trees for Uncertainty Visualization. Yan L; Wang Y; Munch E; Gasparovic E; Wang B IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):832-842. PubMed ID: 31403426 [TBL] [Abstract][Full Text] [Related]
11. Edit Distance between Merge Trees. Sridharamurthy R; Masood TB; Kamakshidasan A; Natarajan V IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1518-1531. PubMed ID: 30295620 [TBL] [Abstract][Full Text] [Related]
12. Linear and Deep Order-Preserving Wasserstein Discriminant Analysis. Su B; Zhou J; Wen JR; Wu Y IEEE Trans Pattern Anal Mach Intell; 2022 Jun; 44(6):3123-3138. PubMed ID: 33434122 [TBL] [Abstract][Full Text] [Related]
14. ExTreeM: Scalable Augmented Merge Tree Computation via Extremum Graphs. Lukasczyk J; Will M; Wetzels F; Weber GH; Garth C IEEE Trans Vis Comput Graph; 2024 Jan; 30(1):1085-1094. PubMed ID: 37871087 [TBL] [Abstract][Full Text] [Related]
15. Scalable Gromov-Wasserstein Based Comparison of Biological Time Series. Kravtsova N; McGee Ii RL; Dawes AT Bull Math Biol; 2023 Jul; 85(8):77. PubMed ID: 37415049 [TBL] [Abstract][Full Text] [Related]
16. Continual Learning of Generative Models With Limited Data: From Wasserstein-1 Barycenter to Adaptive Coalescence. Dedeoglu M; Lin S; Zhang Z; Zhang J IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12042-12056. PubMed ID: 37028381 [TBL] [Abstract][Full Text] [Related]
17. Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing. Luo Y; Zhang S; Cao Y; Sun H Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573839 [TBL] [Abstract][Full Text] [Related]
18. Proxying credit curves via Wasserstein distances. Michielon M; Khedher A; Spreij P Ann Oper Res; 2022 Feb; ():1-17. PubMed ID: 35194285 [TBL] [Abstract][Full Text] [Related]
19. Computing a Stable Distance on Merge Trees. Bollen B; Tennakoon P; Levine JA IEEE Trans Vis Comput Graph; 2023 Jan; 29(1):1168-1177. PubMed ID: 36197851 [TBL] [Abstract][Full Text] [Related]
20. A fast algorithm for computing geodesic distances in tree space. Owen M; Provan JS IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):2-13. PubMed ID: 21071792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]