These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 34596574)
1. Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study. Yun D; Cho S; Kim YC; Kim DK; Oh KH; Joo KW; Kim YS; Han SS JMIR Med Inform; 2021 Oct; 9(10):e27177. PubMed ID: 34596574 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model. Lee HC; Yoon SB; Yang SM; Kim WH; Ryu HG; Jung CW; Suh KS; Lee KH J Clin Med; 2018 Nov; 7(11):. PubMed ID: 30413107 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years. Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448 [No Abstract] [Full Text] [Related]
4. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study. Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405 [TBL] [Abstract][Full Text] [Related]
5. A novel explainable online calculator for contrast-induced AKI in diabetics: a multi-centre validation and prospective evaluation study. Ma M; Wan X; Chen Y; Lu Z; Guo D; Kong H; Pan B; Zhang H; Chen D; Xu D; Sun D; Lang H; Zhou C; Li T; Cao C J Transl Med; 2023 Jul; 21(1):517. PubMed ID: 37525240 [TBL] [Abstract][Full Text] [Related]
6. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993 [TBL] [Abstract][Full Text] [Related]
7. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. Lee HC; Yoon HK; Nam K; Cho YJ; Kim TK; Kim WH; Bahk JH J Clin Med; 2018 Oct; 7(10):. PubMed ID: 30282956 [TBL] [Abstract][Full Text] [Related]
8. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Jiang X; Xu C J Clin Med; 2022 Sep; 11(19):. PubMed ID: 36233640 [TBL] [Abstract][Full Text] [Related]
11. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction. Rahmani K; Thapa R; Tsou P; Casie Chetty S; Barnes G; Lam C; Foon Tso C Int J Med Inform; 2023 May; 173():104930. PubMed ID: 36893656 [TBL] [Abstract][Full Text] [Related]
12. Prediction of acute kidney injury after cardiac surgery: model development using a Chinese electronic health record dataset. Zhang H; Wang Z; Tang Y; Chen X; You D; Wu Y; Yu M; Chen W; Zhao Y; Chen X J Transl Med; 2022 Apr; 20(1):166. PubMed ID: 35397573 [TBL] [Abstract][Full Text] [Related]
13. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Budano C; Levis M; D'Amico M; Usmiani T; Fava A; Sbarra P; Burdese M; Segoloni GP; Colombo A; Marra S Am Heart J; 2011 May; 161(5):963-71. PubMed ID: 21570530 [TBL] [Abstract][Full Text] [Related]
14. Application of machine learning with multiparametric dual-energy computed tomography of the breast to differentiate between benign and malignant lesions. Lan X; Wang X; Qi J; Chen H; Zeng X; Shi J; Liu D; Shen H; Zhang J Quant Imaging Med Surg; 2022 Jan; 12(1):810-822. PubMed ID: 34993120 [TBL] [Abstract][Full Text] [Related]
15. Comparison Between Statistical Model and Machine Learning Methods for Predicting the Risk of Renal Function Decline Using Routine Clinical Data in Health Screening. Cao X; Lin Y; Yang B; Li Y; Zhou J Risk Manag Healthc Policy; 2022; 15():817-826. PubMed ID: 35502445 [TBL] [Abstract][Full Text] [Related]
16. Application of machine learning model to predict lacunar cerebral infarction in elderly patients with femoral neck fracture before surgery. Huang CB; Tan K; Wu ZY; Yang L BMC Geriatr; 2022 Nov; 22(1):912. PubMed ID: 36443675 [TBL] [Abstract][Full Text] [Related]
17. Interpretable recurrent neural network models for dynamic prediction of the extubation failure risk in patients with invasive mechanical ventilation in the intensive care unit. Zeng Z; Tang X; Liu Y; He Z; Gong X BioData Min; 2022 Sep; 15(1):21. PubMed ID: 36163063 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis. Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540 [TBL] [Abstract][Full Text] [Related]
19. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients]. Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290 [No Abstract] [Full Text] [Related]
20. Machine learning approach to predict acute kidney injury after liver surgery. Dong JF; Xue Q; Chen T; Zhao YY; Fu H; Guo WY; Ji JS World J Clin Cases; 2021 Dec; 9(36):11255-11264. PubMed ID: 35071556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]