These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34596652)

  • 1. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.
    Liang S; Gan C; Dai Y; Zhang C; Bai X; Zhang S; Wheeler AR; Chen H; Feng L
    Lab Chip; 2021 Nov; 21(22):4379-4389. PubMed ID: 34596652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.
    Zhang S; Shakiba N; Chen Y; Zhang Y; Tian P; Singh J; Chamberlain MD; Satkauskas M; Flood AG; Kherani NP; Yu S; Zandstra PW; Wheeler AR
    Small; 2018 Nov; 14(45):e1803342. PubMed ID: 30307718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Optoelectronic Tweezer System for Micro-Objects Manipulation: Transportation, Patterning, Sorting, Rotating and Storage.
    Liang S; Cao Y; Dai Y; Wang F; Bai X; Song B; Zhang C; Gan C; Arai F; Feng L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media.
    Yang Y; Mao Y; Shin KS; Chui CO; Chiou PY
    Sci Rep; 2016 Mar; 6():22630. PubMed ID: 26940301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.
    Hsu HY; Ohta AT; Chiou PY; Jamshidi A; Neale SL; Wu MC
    Lab Chip; 2010 Jan; 10(2):165-72. PubMed ID: 20066243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating and assembling metallic beads with Optoelectronic Tweezers.
    Zhang S; Juvert J; Cooper JM; Neale SL
    Sci Rep; 2016 Sep; 6():32840. PubMed ID: 27599445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.
    Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD
    Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers.
    Zhang S; Li W; Elsayed M; Tian P; Clark AW; Wheeler AR; Neale SL
    Opt Lett; 2019 Sep; 44(17):4171-4174. PubMed ID: 31465355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of electrostatic particle-particle interactions in optoelectronic tweezers.
    Hwang H; Kim JJ; Park JK
    J Phys Chem B; 2008 Aug; 112(32):9903-8. PubMed ID: 18646802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. POMDP-Based Real-Time Path Planning for Manipulation of Multiple Microparticles via Optoelectronic Tweezers.
    Liu J; Wang H; Liu M; Zhao R; Zhao Y; Sun T; Shi Q
    Cyborg Bionic Syst; 2022; 2022():9890607. PubMed ID: 36407009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval.
    Gan C; Zhang J; Chen B; Wang A; Xiong H; Zhao J; Wang C; Liang S; Feng L
    Small; 2024 Jun; 20(23):e2307329. PubMed ID: 38509856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel Manipulation and Flexible Assembly of Micro-Spiral
    Liang S; Sun J; Zhang C; Zhu Z; Dai Y; Gan C; Cai J; Chen H; Feng L
    Front Bioeng Biotechnol; 2022; 10():868821. PubMed ID: 35387303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments.
    Chen H; Wang C; Lou Y
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1518-27. PubMed ID: 23380840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system.
    Hwang H; Choi YJ; Choi W; Kim SH; Jang J; Park JK
    Electrophoresis; 2008 Mar; 29(6):1203-12. PubMed ID: 18297658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.
    Huang KW; Su TW; Ozcan A; Chiou PY
    Lab Chip; 2013 Jun; 13(12):2278-84. PubMed ID: 23661233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells.
    Jeorrett AH; Neale SL; Massoubre D; Gu E; Henderson RK; Millington O; Mathieson K; Dawson MD
    Opt Express; 2014 Jan; 22(2):1372-80. PubMed ID: 24515144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.