These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 34596764)
1. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Sankar S; Mehta V; Ravi S; Sharma CS; Rath SN Biomed Microdevices; 2021 Oct; 23(4):50. PubMed ID: 34596764 [TBL] [Abstract][Full Text] [Related]
2. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. Mehta V; Vilikkathala Sudhakaran S; Nellore V; Madduri S; Rath SN J Nanobiotechnology; 2024 Jun; 22(1):344. PubMed ID: 38890730 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput, open-space and reusable microfluidic chip for combinational drug screening on tumor spheroids. Li L; Chen Y; Wang H; An G; Wu H; Huang W Lab Chip; 2021 Oct; 21(20):3924-3932. PubMed ID: 34636818 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Prince E; Kheiri S; Wang Y; Xu F; Cruickshank J; Topolskaia V; Tao H; Young EWK; McGuigan AP; Cescon DW; Kumacheva E Adv Healthc Mater; 2022 Jan; 11(1):e2101085. PubMed ID: 34636180 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Lee Y; Chen Z; Lim W; Cho H; Park S Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205 [TBL] [Abstract][Full Text] [Related]
6. Multiplexed Viability Assays for High-Throughput Screening of Spheroids of Multiple Sizes. Marimuthu M; Gervais T Methods Mol Biol; 2023; 2644():435-447. PubMed ID: 37142939 [TBL] [Abstract][Full Text] [Related]
7. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855 [TBL] [Abstract][Full Text] [Related]
8. Digital microfluidics for automated hanging drop cell spheroid culture. Aijian AP; Garrell RL J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471 [TBL] [Abstract][Full Text] [Related]
9. Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine. Zhang Z; Chen YC; Urs S; Chen L; Simeone DM; Yoon E Small; 2018 Oct; 14(42):e1703617. PubMed ID: 30239130 [TBL] [Abstract][Full Text] [Related]
10. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
11. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening. Wu Q; Wei X; Pan Y; Zou Y; Hu N; Wang P Biomed Microdevices; 2018 Sep; 20(4):82. PubMed ID: 30220069 [TBL] [Abstract][Full Text] [Related]
12. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084 [TBL] [Abstract][Full Text] [Related]
13. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Chen Y; Gao D; Liu H; Lin S; Jiang Y Anal Chim Acta; 2015 Oct; 898():85-92. PubMed ID: 26526913 [TBL] [Abstract][Full Text] [Related]
14. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Patra B; Peng CC; Liao WH; Lee CH; Tung YC Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244 [TBL] [Abstract][Full Text] [Related]
15. Reconfigurable Microfluidic Magnetic Valve Arrays: Towards a Radiotherapy-Compatible Spheroid Culture Platform for the Combinatorial Screening of Cancer Therapies. Brunet AR; Labelle F; Wong P; Gervais T Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28976942 [TBL] [Abstract][Full Text] [Related]
16. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266 [TBL] [Abstract][Full Text] [Related]
17. Cell Death Analysis in Cancer Spheroids from a Microfluidic Device. Lafontaine J; Refet-Mollof E; Najyb O; Gervais T; Wong P Methods Mol Biol; 2022; 2543():13-25. PubMed ID: 36087255 [TBL] [Abstract][Full Text] [Related]
18. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. Azizipour N; Avazpour R; Sawan M; Ajji A; H Rosenzweig D Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590879 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202 [TBL] [Abstract][Full Text] [Related]
20. A versatile dilution-treatment-detection microfluidic chip platform for rapid In vitro lung cancer drug combination sensitivity evaluation. Zhang C; Tian K; Meng Z; Zhang J; Lu Y; Tan L; Zhang M; Xu D Talanta; 2024 Sep; 277():126298. PubMed ID: 38823330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]