These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34596829)
21. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Chen Y; Chen L; Yang T Life Sci; 2021 Apr; 271():119197. PubMed ID: 33577847 [TBL] [Abstract][Full Text] [Related]
22. Protection of CTGF Antibody Against Diabetic Nephropathy in Mice Via Reducing Glomerular β-Catenin Expression and Podocyte Epithelial-Mesenchymal Transition. Dai HY; Ma LN; Cao Y; Chen XL; Shi H; Fan YP; Yang B J Cell Biochem; 2017 Nov; 118(11):3706-3712. PubMed ID: 28370212 [TBL] [Abstract][Full Text] [Related]
23. Effect of Tang-Shen-Ning decoction on podocyte epithelial-esenchymal transformation via inhibiting Wnt/β-catenin pathway in diabetic mice. Cui FQ; Gao YB; Wang YF; Meng Y; Cai Z; Shen C; Jiang XC; Zhao WJ Ann Palliat Med; 2021 Dec; 10(12):12921-12936. PubMed ID: 32921066 [TBL] [Abstract][Full Text] [Related]
24. Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chen KH; Hung CC; Hsu HH; Jing YH; Yang CW; Chen JK Chem Biol Interact; 2011 Mar; 190(1):45-53. PubMed ID: 21300041 [TBL] [Abstract][Full Text] [Related]
25. Critical role of serum response factor in podocyte epithelial-mesenchymal transition of diabetic nephropathy. Zhao L; Wang X; Sun L; Nie H; Liu X; Chen Z; Guan G Diab Vasc Dis Res; 2016 Jan; 13(1):81-92. PubMed ID: 26408645 [TBL] [Abstract][Full Text] [Related]
26. [Modified Fangji Huangqi Decoction alleviates renal interstitial fibrosis by inhibiting TGF-β1/Smad/Snail signaling pathway during epithelial-mesenchymal transition]. Deng YW; Jin L; Chen DP Zhongguo Zhong Yao Za Zhi; 2024 Jun; 49(11):3012-3020. PubMed ID: 39041161 [TBL] [Abstract][Full Text] [Related]
28. [Role of TGF-β/Smad signaling pathway in diabetic kidney disease and research progress of traditional Chinese medicine intervention]. Chen YX; Jiang XX; Zhang QY; Xu CQ; Hu YM; Jin CY; Zhang BL; Fu YQ; Jin ZS Zhongguo Zhong Yao Za Zhi; 2023 May; 48(10):2630-2638. PubMed ID: 37282924 [TBL] [Abstract][Full Text] [Related]
29. Swiprosin-1 Promotes Mitochondria-Dependent Apoptosis of Glomerular Podocytes via P38 MAPK Pathway in Early-Stage Diabetic Nephropathy. Wang RM; Wang ZB; Wang Y; Liu WY; Li Y; Tong LC; Zhang S; Su DF; Cao YB; Li L; Zhang LC Cell Physiol Biochem; 2018; 45(3):899-916. PubMed ID: 29421811 [TBL] [Abstract][Full Text] [Related]
30. Astragaloside IV attenuates high glucose-induced EMT by inhibiting the TGF-β/Smad pathway in renal proximal tubular epithelial cells. Wang YN; Zhao SL; Su YY; Feng JX; Wang S; Liao XM; Wang LN; Li JC; Meng P; Li HY; Zhang YF Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32515466 [TBL] [Abstract][Full Text] [Related]
31. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Gao J; Liang Z; Zhao F; Liu X; Ma N Bioengineered; 2022 May; 13(5):12275-12288. PubMed ID: 35603354 [TBL] [Abstract][Full Text] [Related]
32. C-peptide ameliorates high glucose-induced podocyte dysfunction through the regulation of the Notch and TGF-β signaling pathways. Luo J; Jiang J; Huang H; Jiang F; Xu Z; Zhou Z; Zhu H Peptides; 2021 Aug; 142():170557. PubMed ID: 33901627 [TBL] [Abstract][Full Text] [Related]
33. Triptolide prevents extracellular matrix accumulation in experimental diabetic kidney disease by targeting microRNA-137/Notch1 pathway. Han F; Wang S; Chang Y; Li C; Yang J; Han Z; Chang B; Sun B; Chen L J Cell Physiol; 2018 Mar; 233(3):2225-2237. PubMed ID: 28695984 [TBL] [Abstract][Full Text] [Related]
34. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Wan J; Li P; Liu DW; Chen Y; Mo HZ; Liu BG; Chen WJ; Lu XQ; Guo J; Zhang Q; Qiao YJ; Liu ZS; Wan GR Mol Med Rep; 2016 Aug; 14(2):1771-84. PubMed ID: 27357417 [TBL] [Abstract][Full Text] [Related]
35. Tripterygium glycoside suppresses epithelial‑to‑mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway. Tao M; Zheng D; Liang X; Wu D; Hu K; Jin J; He Q Mol Med Rep; 2021 Aug; 24(2):. PubMed ID: 34165172 [TBL] [Abstract][Full Text] [Related]
36. Protective Effects of Berberine on Renal Injury in Streptozotocin (STZ)-Induced Diabetic Mice. Zhang X; He H; Liang D; Jiang Y; Liang W; Chi ZH; Ma J Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27529235 [TBL] [Abstract][Full Text] [Related]
37. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats. Xu H; Wang X; Liu M; He X Evid Based Complement Alternat Med; 2017; 2017():1479136. PubMed ID: 28163747 [TBL] [Abstract][Full Text] [Related]
38. Zinc Attenuates Tubulointerstitial Fibrosis in Diabetic Nephropathy Via Inhibition of HIF Through PI-3K Signaling. Zhang X; Liang D; Fan J; Lian X; Zhao Y; Wang X; Chi ZH; Zhang P Biol Trace Elem Res; 2016 Oct; 173(2):372-83. PubMed ID: 26956696 [TBL] [Abstract][Full Text] [Related]
39. Triptolide ameliorates fine particulate matter-induced podocytes injury via regulating NF-κB signaling pathway. Wan Q; Liu Z; Yang M; Deng P; Tang N; Liu Y BMC Mol Cell Biol; 2020 Feb; 21(1):4. PubMed ID: 32013860 [TBL] [Abstract][Full Text] [Related]
40. Inflammatory stress exacerbates lipid accumulation and podocyte injuries in diabetic nephropathy. Zhang Y; Ma KL; Liu J; Wu Y; Hu ZB; Liu L; Lu J; Zhang XL; Liu BC Acta Diabetol; 2015 Dec; 52(6):1045-56. PubMed ID: 25896009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]