These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34596844)

  • 1. Computational Design of Structured and Functional Peptide Macrocycles.
    Berger S; Hosseinzadeh P
    Methods Mol Biol; 2022; 2371():63-100. PubMed ID: 34596844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of mixed chirality peptide macrocycles with internal symmetry.
    Mulligan VK; Kang CS; Sawaya MR; Rettie S; Li X; Antselovich I; Craven TW; Watkins AM; Labonte JW; DiMaio F; Yeates TO; Baker D
    Protein Sci; 2020 Dec; 29(12):2433-2445. PubMed ID: 33058266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions.
    Duffy F; Maheshwari N; Buchete NV; Shields D
    Methods Mol Biol; 2019; 2001():73-95. PubMed ID: 31134568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emerging role of computational design in peptide macrocycle drug discovery.
    Mulligan VK
    Expert Opin Drug Discov; 2020 Jul; 15(7):833-852. PubMed ID: 32345066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of structured loops for new protein functions.
    Kundert K; Kortemme T
    Biol Chem; 2019 Feb; 400(3):275-288. PubMed ID: 30676995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design.
    Renfrew PD; Choi EJ; Bonneau R; Kuhlman B
    PLoS One; 2012; 7(3):e32637. PubMed ID: 22431978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the elucidation of the mechanism for passive membrane permeability of cyclic peptides.
    Riniker S
    Future Med Chem; 2019 Apr; 11(7):637-639. PubMed ID: 30920310
    [No Abstract]   [Full Text] [Related]  

  • 9. Contemporary strategies for peptide macrocyclization.
    White CJ; Yudin AK
    Nat Chem; 2011 Jun; 3(7):509-24. PubMed ID: 21697871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approaches to developing short cyclic peptide modulators of protein-protein interactions.
    Duffy FJ; Devocelle M; Shields DC
    Methods Mol Biol; 2015; 1268():241-71. PubMed ID: 25555728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields.
    Geng H; Jiang F; Wu YD
    J Phys Chem Lett; 2016 May; 7(10):1805-10. PubMed ID: 27128113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methods to design cyclic peptides.
    McHugh SM; Rogers JR; Solomon SA; Yu H; Lin YS
    Curr Opin Chem Biol; 2016 Oct; 34():95-102. PubMed ID: 27592259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Display Methods for the Discovery of Bioactive Macrocycles.
    Huang Y; Wiedmann MM; Suga H
    Chem Rev; 2019 Sep; 119(17):10360-10391. PubMed ID: 30395448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constraining cyclic peptides to mimic protein structure motifs.
    Hill TA; Shepherd NE; Diness F; Fairlie DP
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13020-41. PubMed ID: 25287434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding and designing head-to-tail cyclic peptides.
    Slough DP; McHugh SM; Lin YS
    Biopolymers; 2018 Aug; 109(10):e23113. PubMed ID: 29528114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Site Saturation Mutagenesis of Canonical and Non-Canonical Amino Acids to Probe Protein-Peptide Interactions.
    Holden JK; Pavlovicz R; Gobbi A; Song Y; Cunningham CN
    Front Mol Biosci; 2022; 9():848689. PubMed ID: 35495632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation.
    Ford AS; Weitzner BD; Bahl CD
    Protein Sci; 2020 Jan; 29(1):43-51. PubMed ID: 31495995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward accurately modeling N-methylated cyclic peptides.
    Slough DP; Yu H; McHugh SM; Lin YS
    Phys Chem Chem Phys; 2017 Feb; 19(7):5377-5388. PubMed ID: 28155950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.