These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 34597013)

  • 1. Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels.
    Chansoria P; Asif S; Polkoff K; Chung J; Piedrahita JA; Shirwaiker RA
    ACS Biomater Sci Eng; 2021 Nov; 7(11):5175-5188. PubMed ID: 34597013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.
    Klotz BJ; Gawlitta D; Rosenberg AJWP; Malda J; Melchels FPW
    Trends Biotechnol; 2016 May; 34(5):394-407. PubMed ID: 26867787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications.
    Wang Z; Tian Z; Menard F; Kim K
    Biofabrication; 2017 Aug; 9(4):044101. PubMed ID: 28770808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels.
    Young AT; White OC; Daniele MA
    Macromol Biosci; 2020 Dec; 20(12):e2000183. PubMed ID: 32856384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status.
    Das S; Jegadeesan JT; Basu B
    Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial Extrusion of Tubular Tissue Constructs Using a Gelatin/GelMA Blend Bioink.
    Wang Y; Kankala RK; Zhu K; Wang SB; Zhang YS; Chen AZ
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5514-5524. PubMed ID: 33464071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration.
    Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
    Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A
    Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads.
    Sheikhi A; de Rutte J; Haghniaz R; Akouissi O; Sohrabi A; Di Carlo D; Khademhosseini A
    Biomaterials; 2019 Feb; 192():560-568. PubMed ID: 30530245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular interactions and forces of adhesion between single human neural stem cells and gelatin methacrylate hydrogels of varying stiffness.
    Puckert C; Tomaskovic-Crook E; Gambhir S; Wallace GG; Crook JM; Higgins MJ
    Acta Biomater; 2020 Apr; 106():156-169. PubMed ID: 32084598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects.
    Hölzl K; Fürsatz M; Göcerler H; Schädl B; Žigon-Branc S; Markovic M; Gahleitner C; Hoorick JV; Van Vlierberghe S; Kleiner A; Baudis S; Pauschitz A; Redl H; Ovsianikov A; Nürnberger S
    J Tissue Eng Regen Med; 2022 Feb; 16(2):207-222. PubMed ID: 34861104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Gelatin Methacryloyl Hydrogel Properties through an Artificial Neural Network Model.
    Karaoglu IC; Kebabci AO; Kizilel S
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44796-44808. PubMed ID: 37704030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications.
    Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF
    Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA).
    Sharifi S; Sharifi H; Akbari A; Chodosh J
    Sci Rep; 2021 Dec; 11(1):23276. PubMed ID: 34857867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Encapsulated Cells on the Physical-Mechanical Properties and Microstructure of Gelatin Methacrylate Hydrogels.
    Krishnamoorthy S; Noorani B; Xu C
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Molecular Conformation and Viscoelasticity of Low Sol-Gel Transition Temperature Gelatin Methacryloyl Suspensions.
    Padilla C; Quero F; Pępczyńska M; Díaz-Calderon P; Acevedo JP; Byres N; Blaker JJ; MacNaughtan W; Williams HEL; Enrione J
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.