These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34597033)

  • 21. Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies.
    Liu L; Tian Y; Abdussalam A; Gilani MRHS; Zhang W; Xu G
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries.
    Chen J; Chen G; Zhao S; Feng J; Wang R; Parkin IP; He G
    Small; 2023 Feb; 19(7):e2206588. PubMed ID: 36470658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage.
    Yang L; Hu M; Zhang H; Yang W; Lv R
    J Colloid Interface Sci; 2020 Apr; 566():257-264. PubMed ID: 32007737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Interconnected and Multiwalled Carbon@MoS
    Wang Y; Qu Q; Li G; Gao T; Qian F; Shao J; Liu W; Shi Q; Zheng H
    Small; 2016 Nov; 12(43):6033-6041. PubMed ID: 27594675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage.
    Cai C; Chen Y; Hu P; Zhu T; Li X; Yu Q; Zhou L; Yang X; Mai L
    Small; 2022 Feb; 18(6):e2105303. PubMed ID: 34854545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage.
    Yang J; Wang X; Dai W; Lian X; Cui X; Zhang W; Zhang K; Lin M; Zou R; Loh KP; Yang QH; Chen W
    Nanomicro Lett; 2021 Mar; 13(1):98. PubMed ID: 34138264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational design of few-layer MoSe
    Zeng L; Fang Y; Xu L; Zheng C; Yang MQ; He J; Xue H; Qian Q; Wei M; Chen Q
    Nanoscale; 2019 Apr; 11(14):6766-6775. PubMed ID: 30907895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring Carbonization Temperature to Create Closed Pores for Hard Carbon as High-Performance Sodium-Ion Battery Anodes.
    Zhang X; Cao Y; Li G; Liu G; Dong X; Wang Y; Jiang X; Zhang X; Xia Y
    Small; 2024 Apr; ():e2311197. PubMed ID: 38593375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring a Phenolic Resin Precursor by Facile Pre-oxidation Tactics to Realize a High-Initial-Coulombic-Efficiency Hard Carbon Anode for Sodium-Ion Batteries.
    Zhang G; Zhang L; Ren Q; Yan L; Zhang F; Lv W; Shi Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31650-31659. PubMed ID: 34189907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid Template Assisted Activation for "Egg Puff"-Like Hard Carbon toward High Sodium Storage Performance.
    Guo M; Zhang H; Huang Z; Li W; Zhang D; Gao C; Gao F; He P; Wang J; Chen W; Chen X; Terrones M; Wang Y
    Small; 2023 Sep; 19(39):e2302583. PubMed ID: 37236201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries.
    Liu ZG; Zhao J; Yao H; He XX; Zhang H; Qiao Y; Wu XQ; Li L; Chou SL
    Chem Sci; 2024 Jun; 15(22):8478-8487. PubMed ID: 38846387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins of irreversible capacity loss in hard carbon negative electrodes for potassium-ion batteries.
    Katorova NS; Luchkin SY; Rupasov DP; Abakumov AM; Stevenson KJ
    J Chem Phys; 2020 May; 152(19):194704. PubMed ID: 33687249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Boosting the Reversible, High-Rate Na
    Hou L; Liu T; Wang H; Bai M; Tang X; Wang Z; Zhang M; Li S; Wang T; Zhou K; Ma Y
    Small; 2023 May; 19(21):e2207638. PubMed ID: 36843222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries.
    Rath PC; Patra J; Huang HT; Bresser D; Wu TY; Chang JK
    ChemSusChem; 2019 May; 12(10):2302-2309. PubMed ID: 30835938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method.
    Lu H; Ai F; Jia Y; Tang C; Zhang X; Huang Y; Yang H; Cao Y
    Small; 2018 Sep; 14(39):e1802694. PubMed ID: 30175558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism.
    Yu ZE; Lyu Y; Wang Y; Xu S; Cheng H; Mu X; Chu J; Chen R; Liu Y; Guo B
    Chem Commun (Camb); 2020 Jan; 56(5):778-781. PubMed ID: 31845678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant-assisted molecular-level tunning of phenol-formaldehyde-based hard carbon microspheres for high-performance sodium-ion batteries.
    Liu Y; Liu D; Liu P; Liu C; Zhou J
    J Colloid Interface Sci; 2024 Jul; 666():118-130. PubMed ID: 38588624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-Functionalized Ca Enables High Sodiation Kinetics for Hard Carbon in Sodium-Ion Batteries.
    Li Y; Shi J; Wu F; Li Y; Feng X; Liu M; Wu C; Bai Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2397-2407. PubMed ID: 38178364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Initial Coulombic Efficiency Hard Carbon Anodes Enabled by Facile Surface Annealing Engineering.
    Deng M; Dong W; Huang F
    Chem Asian J; 2023 Jun; 18(11):e202300210. PubMed ID: 37036749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.