These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34597049)

  • 1. Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Protrusive Surfaces Inspired by Pufferfish Skin: Effects of Spinal Density and Diameter.
    Fan D; Feng X; Tian G; Zhang Y
    Langmuir; 2021 Oct; 37(40):11804-11817. PubMed ID: 34597049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin.
    Feng X; Fan D; Tian G; Zhang Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32747-32760. PubMed ID: 35815482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Turbulent Boundary Layer Structure over a Sparsely Spaced Biomimetic Spine-Covered Protrusion Surface.
    Tian G; Zhu Y; Feng X; Zhou H; Zhang Y
    ACS Omega; 2021 Jun; 6(22):14220-14229. PubMed ID: 34124445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Analysis of Drag Reduction Characteristics of Biomimetic Puffer Skin: Effect of Spinal Height and Tilt Angle.
    Zhou HG; Jia CF; Tian GZ; Feng XM; Fan DL
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4615-4624. PubMed ID: 33691840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation control over a grooved surface inspired by dolphin skin.
    Lang AW; Jones EM; Afroz F
    Bioinspir Biomim; 2017 Feb; 12(2):026005. PubMed ID: 28059780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-Solid Interfacial Properties and Drag-Reducing Characterization of the Flexible Conical Microstructured Film Inspired by the Streamlined Body Surface of the Pufferfish.
    Zhu D; Zhao L; Feng X; Zhou W; Hu Y; Wang C; Ruan H; Tian G
    Langmuir; 2024 Jun; 40(23):12045-12058. PubMed ID: 38814144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary layer hydrodynamics of patchy biofilms.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2022 Aug; 38(7):696-714. PubMed ID: 36062568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics.
    Murphy EAK; Barros JM; Schultz MP; Flack KA; Steppe CN; Reidenbach MA
    Biofouling; 2018 Oct; 34(9):976-988. PubMed ID: 30602310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure.
    Placidi M; Ganapathisubramani B
    Boundary Layer Meteorol; 2018; 167(1):99-121. PubMed ID: 31258157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition delay using biomimetic fish scale arrays.
    Muthuramalingam M; Puckert DK; Rist U; Bruecker C
    Sci Rep; 2020 Sep; 10(1):14534. PubMed ID: 32884032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drag reduction using bionic groove surface for underwater vehicles.
    Zheng S; Liang X; Li J; Liu Y; Tang J
    Front Bioeng Biotechnol; 2023; 11():1223691. PubMed ID: 37691898
    [No Abstract]   [Full Text] [Related]  

  • 14. Research on the drag reduction property of puffer (Takifugu flavidus) spinal nonsmooth structure surface.
    Zhou H; Liu C; Tian G; Feng X; Jia C
    Microsc Res Tech; 2020 Jul; 83(7):795-803. PubMed ID: 32144850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-inspired two-stage bionic drag reduction method.
    Luo Z; Jia X; Zhu S; Zhao P; Zhang K; Guo H
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38497834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the influence of biomimetic shark skin in dynamic flow separation.
    Guo P; Zhang K; Yasuda Y; Yang W; Galipon J; Rival DE
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33482662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithmic-driven design of shark denticle bioinspired structures for superior aerodynamic properties.
    Ott J; Lazalde M; Gu GX
    Bioinspir Biomim; 2020 Jan; 15(2):026001. PubMed ID: 31775125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of laminar and turbulent boundary layer separation control of shark skin.
    Afroz F; Lang A; Habegger ML; Motta P; Hueter R
    Bioinspir Biomim; 2016 Dec; 12(1):016009. PubMed ID: 27995903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.