These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 34597049)
21. Experimental study of laminar and turbulent boundary layer separation control of shark skin. Afroz F; Lang A; Habegger ML; Motta P; Hueter R Bioinspir Biomim; 2016 Dec; 12(1):016009. PubMed ID: 27995903 [TBL] [Abstract][Full Text] [Related]
22. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges. Yeginbayeva IA; Atlar M Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869 [TBL] [Abstract][Full Text] [Related]
23. SPH modelling of depth-limited turbulent open channel flows over rough boundaries. Kazemi E; Nichols A; Tait S; Shao S Int J Numer Methods Fluids; 2017 Jan; 83(1):3-27. PubMed ID: 28066121 [TBL] [Abstract][Full Text] [Related]
24. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Dean B; Bhushan B Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4775-806. PubMed ID: 20855320 [TBL] [Abstract][Full Text] [Related]
25. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Bhushan B Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417 [TBL] [Abstract][Full Text] [Related]
26. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417 [TBL] [Abstract][Full Text] [Related]
27. Bubbly turbulent drag reduction is a boundary layer effect. van den Berg TH; van Gils DP; Lathrop DP; Lohse D Phys Rev Lett; 2007 Feb; 98(8):084501. PubMed ID: 17359101 [TBL] [Abstract][Full Text] [Related]
28. Hydrodynamic efficiency in sharks: the combined role of riblets and denticles. Lloyd CJ; Peakall J; Burns AD; Keevil GM; Dorrell RM; Wignall PB; Fletcher TM Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784651 [TBL] [Abstract][Full Text] [Related]
29. Frictional drag measurements of large-scale plates in an enhanced plane channel flowcell. Turkmen S; Atlar M; Yeginbayeva I; Benson S; Finlay JA; Clare AS Biofouling; 2020 Feb; 36(2):169-182. PubMed ID: 32233656 [TBL] [Abstract][Full Text] [Related]
30. Laser Ablating Biomimetic Periodic Array Fish Scale Surface for Drag Reduction. Chen D; Zhang B; Zhang H; Shangguan Z; Sun C; Cui X; Liu X; Zhao Z; Liu G; Chen H Biomimetics (Basel); 2024 Jul; 9(7):. PubMed ID: 39056856 [TBL] [Abstract][Full Text] [Related]
32. Computational fluid dynamics approaches to drag and wake of a long-line mussel dropper under tidal current. Xu Z; Qin H; Li P; Liu R Sci Prog; 2020; 103(1):36850419901235. PubMed ID: 32024433 [TBL] [Abstract][Full Text] [Related]
33. The boundary layer of swimming fish. Anderson EJ; McGillis WR; Grosenbaugh MA J Exp Biol; 2001 Jan; 204(Pt 1):81-102. PubMed ID: 11104713 [TBL] [Abstract][Full Text] [Related]
34. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin. Chen D; Cui X; Chen H Microsc Res Tech; 2021 Aug; 84(8):1862-1872. PubMed ID: 33665946 [TBL] [Abstract][Full Text] [Related]
35. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer. Blake RW; Chan KH J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887 [TBL] [Abstract][Full Text] [Related]
36. Drag Reduction by Fish-Scale Inspired Transverse Asymmetric Triangular Riblets: Modelling, Preliminary Experimental Analysis and Potential for Fouling Control. Hamilton BW; Tutunea-Fatan OR; Bordatchev EV Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504213 [TBL] [Abstract][Full Text] [Related]