These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34597144)

  • 21. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice.
    Sakurai K; Onishi A; Imai H; Chisaka O; Ueda Y; Usukura J; Nakatani K; Shichida Y
    J Gen Physiol; 2007 Jul; 130(1):21-40. PubMed ID: 17591985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single amino acid residue as a functional determinant of rod and cone visual pigments.
    Imai H; Kojima D; Oura T; Tachibanaki S; Terakita A; Shichida Y
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2322-6. PubMed ID: 9122193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of visual pigments and related molecules.
    Tokunaga F; Hisatomi O; Satoh T; Taniguchi Y; Matsuda S; Imanishi Y; Honkawa H; Takahashi Y; Kobayashi Y; Yoshida M; Tsukahara Y
    Novartis Found Symp; 1999; 224():44-52; discussion 52-3. PubMed ID: 10614045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual cycle and its metabolic support in gecko photoreceptors.
    Kolesnikov AV; Ala-Laurila P; Shukolyukov SA; Crouch RK; Wiggert B; Estevez ME; Govardovskii VI; Cornwall MC
    Vision Res; 2007 Feb; 47(3):363-74. PubMed ID: 17049961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phototransduction in Anuran Green Rods: Origins of Extra-Sensitivity.
    Astakhova LA; Novoselov AD; Ermolaeva ME; Firsov ML; Rotov AY
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The nature of the gecko visual pigment.
    CRESCITELLI F
    J Gen Physiol; 1956 Nov; 40(2):217-31. PubMed ID: 13385449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.
    Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoreceptor cell types in the retina of various vertebrate species: immunocytochemistry with antibodies against rhodopsin and iodopsin.
    Kawata A; Oishi T; Fukada Y; Shichida Y; Yoshizawa T
    Photochem Photobiol; 1992 Dec; 56(6):1157-66. PubMed ID: 1492130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The retinal pigments of the whale shark (
    Fasick JI; Algrain H; Serba KM; Robinson PR
    Vis Neurosci; 2019 Nov; 36():E011. PubMed ID: 31718726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments.
    Krishnamoorthi A; Khosh Abady K; Dhankhar D; Rentzepis PM
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LOCOMOTOR PERFORMANCE AT LOW TEMPERATURE AND THE EVOLUTION OF NOCTURNALITY IN GECKOS.
    Autumn K; Jindrich D; DeNardo D; Mueller R
    Evolution; 1999 Apr; 53(2):580-599. PubMed ID: 28565430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. VISUAL PIGMENTS IN SINGLE RODS AND CONES OF THE HUMAN RETINA. DIRECT MEASUREMENTS REVEAL MECHANISMS OF HUMAN NIGHT AND COLOR VISION.
    BROWN PK; WALD G
    Science; 1964 Apr; 144(3614):45-52. PubMed ID: 14107460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
    Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y
    Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction.
    Lamb TD
    J Physiol; 2022 Nov; 600(21):4585-4601. PubMed ID: 35412676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision.
    Umino Y; Guo Y; Chen CK; Pasquale R; Solessio E
    J Neurosci; 2019 Apr; 39(16):3041-3056. PubMed ID: 30737308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.