These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34597668)

  • 1. Kinetics of H
    Kuusk S; Väljamäe P
    J Biol Chem; 2021 Nov; 297(5):101256. PubMed ID: 34597668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction.
    Kuusk S; Eijsink VGH; Väljamäe P
    J Biol Chem; 2023 Sep; 299(9):105094. PubMed ID: 37507015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of H
    Kuusk S; Bissaro B; Kuusk P; Forsberg Z; Eijsink VGH; Sørlie M; Väljamäe P
    J Biol Chem; 2018 Jan; 293(2):523-531. PubMed ID: 29138240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs).
    Kont R; Bissaro B; Eijsink VGH; Väljamäe P
    Nat Commun; 2020 Nov; 11(1):5786. PubMed ID: 33188177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes.
    Rieder L; Stepnov AA; Sørlie M; Eijsink VGH
    Biochemistry; 2021 Nov; 60(47):3633-3643. PubMed ID: 34738811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid.
    Stepnov AA; Christensen IA; Forsberg Z; Aachmann FL; Courtade G; Eijsink VGH
    FEBS Lett; 2022 Jan; 596(1):53-70. PubMed ID: 34845720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases.
    Munzone A; Eijsink VGH; Berrin JG; Bissaro B
    Nat Rev Chem; 2024 Feb; 8(2):106-119. PubMed ID: 38200220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry.
    Bissaro B; Eijsink VGH
    Essays Biochem; 2023 Mar; 67(3):575-584. PubMed ID: 36734231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism of the chitinolytic peroxygenase reaction.
    Bissaro B; Streit B; Isaksen I; Eijsink VGH; Beckham GT; DuBois JL; Røhr ÅK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1504-1513. PubMed ID: 31907317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in
    Adnan M; Ma X; Xie Y; Waheed A; Liu G
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H
    Bissaro B; Røhr ÅK; Müller G; Chylenski P; Skaugen M; Forsberg Z; Horn SJ; Vaaje-Kolstad G; Eijsink VGH
    Nat Chem Biol; 2017 Oct; 13(10):1123-1128. PubMed ID: 28846668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the roles of the reductant and free copper ions in LPMO kinetics.
    Stepnov AA; Forsberg Z; Sørlie M; Nguyen GS; Wentzel A; Røhr ÅK; Eijsink VGH
    Biotechnol Biofuels; 2021 Jan; 14(1):28. PubMed ID: 33478537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases.
    Bissaro B; Kommedal E; Røhr ÅK; Eijsink VGH
    Nat Commun; 2020 Feb; 11(1):890. PubMed ID: 32060276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.