BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34597724)

  • 41. The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism.
    König AC; Hartl M; Pham PA; Laxa M; Boersema PJ; Orwat A; Kalitventseva I; Plöchinger M; Braun HP; Leister D; Mann M; Wachter A; Fernie AR; Finkemeier I
    Plant Physiol; 2014 Mar; 164(3):1401-14. PubMed ID: 24424322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute stimulation of glucose influx upon mitoenergetic dysfunction requires LKB1, AMPK, Sirt2 and mTOR-RAPTOR.
    Liemburg-Apers DC; Wagenaars JA; Smeitink JA; Willems PH; Koopman WJ
    J Cell Sci; 2016 Dec; 129(23):4411-4423. PubMed ID: 27793977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mitochondrial lysine acetylome of Arabidopsis.
    König AC; Hartl M; Boersema PJ; Mann M; Finkemeier I
    Mitochondrion; 2014 Nov; 19 Pt B():252-60. PubMed ID: 24727099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.
    De Marchi U; Galindo AN; Thevenet J; Hermant A; Bermont F; Lassueur S; Domingo JS; Kussmann M; Dayon L; Wiederkehr A
    FASEB J; 2019 Apr; 33(4):4660-4674. PubMed ID: 30589571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.
    Santiago-Martínez MG; Encalada R; Lira-Silva E; Pineda E; Gallardo-Pérez JC; Reyes-García MA; Saavedra E; Moreno-Sánchez R; Marín-Hernández A; Jasso-Chávez R
    FEBS J; 2016 May; 283(10):1979-99. PubMed ID: 27000496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility.
    Jeninga EH; Schoonjans K; Auwerx J
    Oncogene; 2010 Aug; 29(33):4617-24. PubMed ID: 20531298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein acetylation in mitochondria plays critical functions in the pathogenesis of fatty liver disease.
    Le-Tian Z; Cheng-Zhang H; Xuan Z; Zhang Q; Zhen-Gui Y; Qing-Qing W; Sheng-Xuan W; Zhong-Jin X; Ran-Ran L; Ting-Jun L; Zhong-Qu S; Zhong-Hua W; Ke-Rong S
    BMC Genomics; 2020 Jun; 21(1):435. PubMed ID: 32586350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
    Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S
    Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity.
    Park JM; Kim TH; Jo SH; Kim MY; Ahn YH
    Sci Rep; 2015 Dec; 5():17395. PubMed ID: 26620281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.
    Di Domenico A; Hofer A; Tundo F; Wenz T
    IUBMB Life; 2014 Nov; 66(11):793-802. PubMed ID: 25400169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of autophagy and mitophagy by nutrient availability and acetylation.
    Webster BR; Scott I; Traba J; Han K; Sack MN
    Biochim Biophys Acta; 2014 Apr; 1841(4):525-34. PubMed ID: 24525425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.
    Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S
    Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase.
    Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R
    FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
    Hirschey MD; Shimazu T; Huang JY; Schwer B; Verdin E
    Cold Spring Harb Symp Quant Biol; 2011; 76():267-77. PubMed ID: 22114326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mitochondrial matrix Ca²⁺ accumulation regulates cytosolic NAD⁺/NADH metabolism, protein acetylation, and sirtuin expression.
    Marcu R; Wiczer BM; Neeley CK; Hawkins BJ
    Mol Cell Biol; 2014 Aug; 34(15):2890-902. PubMed ID: 24865966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids.
    Mandujano-Tinoco EA; Gallardo-Pérez JC; Marín-Hernández A; Moreno-Sánchez R; Rodríguez-Enríquez S
    Biochim Biophys Acta; 2013 Mar; 1833(3):541-51. PubMed ID: 23195224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.