BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34597724)

  • 61. Mitochondrial matrix Ca²⁺ accumulation regulates cytosolic NAD⁺/NADH metabolism, protein acetylation, and sirtuin expression.
    Marcu R; Wiczer BM; Neeley CK; Hawkins BJ
    Mol Cell Biol; 2014 Aug; 34(15):2890-902. PubMed ID: 24865966
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids.
    Mandujano-Tinoco EA; Gallardo-Pérez JC; Marín-Hernández A; Moreno-Sánchez R; Rodríguez-Enríquez S
    Biochim Biophys Acta; 2013 Mar; 1833(3):541-51. PubMed ID: 23195224
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A p300 and SIRT1 Regulated Acetylation Switch of C/EBPα Controls Mitochondrial Function.
    Zaini MA; Müller C; de Jong TV; Ackermann T; Hartleben G; Kortman G; Gührs KH; Fusetti F; Krämer OH; Guryev V; Calkhoven CF
    Cell Rep; 2018 Jan; 22(2):497-511. PubMed ID: 29320743
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation.
    Shindo Y; Komatsu H; Hotta K; Ariga K; Oka K
    Sci Rep; 2016 Jul; 6():29224. PubMed ID: 27374857
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3.
    Kwon S; Seok S; Yau P; Li X; Kemper B; Kemper JK
    J Biol Chem; 2017 Oct; 292(42):17312-17323. PubMed ID: 28808064
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.
    Hallows WC; Yu W; Denu JM
    J Biol Chem; 2012 Feb; 287(6):3850-8. PubMed ID: 22157007
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Activation of AMP-activated Protein Kinase by Metformin Induces Protein Acetylation in Prostate and Ovarian Cancer Cells.
    Galdieri L; Gatla H; Vancurova I; Vancura A
    J Biol Chem; 2016 Nov; 291(48):25154-25166. PubMed ID: 27733682
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mitochondrial protein acetylation regulates metabolism.
    Anderson KA; Hirschey MD
    Essays Biochem; 2012; 52():23-35. PubMed ID: 22708561
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.
    Wilkins HM; Koppel S; Carl SM; Ramanujan S; Weidling I; Michaelis ML; Michaelis EK; Swerdlow RH
    J Neurochem; 2016 Apr; 137(1):76-87. PubMed ID: 26811028
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crosstalk between cellular metabolism and histone acetylation.
    Trefely S; Doan MT; Snyder NW
    Methods Enzymol; 2019; 626():1-21. PubMed ID: 31606071
    [TBL] [Abstract][Full Text] [Related]  

  • 72. SIRT3 deacetylated and increased citrate synthase activity in PD model.
    Cui XX; Li X; Dong SY; Guo YJ; Liu T; Wu YC
    Biochem Biophys Res Commun; 2017 Mar; 484(4):767-773. PubMed ID: 28161643
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.
    Rardin MJ; Newman JC; Held JM; Cusack MP; Sorensen DJ; Li B; Schilling B; Mooney SD; Kahn CR; Verdin E; Gibson BW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6601-6. PubMed ID: 23576753
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis.
    Bi J; Wang Y; Yu H; Qian X; Wang H; Liu J; Zhang X
    Sci Rep; 2017 Mar; 7():44826. PubMed ID: 28322251
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetics of transport and phosphorylation of glucose in cancer cells.
    Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Moreno-Sánchez R
    J Cell Physiol; 2009 Dec; 221(3):552-9. PubMed ID: 19681047
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.
    Yang H; Zhou L; Shi Q; Zhao Y; Lin H; Zhang M; Zhao S; Yang Y; Ling ZQ; Guan KL; Xiong Y; Ye D
    EMBO J; 2015 Apr; 34(8):1110-25. PubMed ID: 25755250
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function.
    Zhang Y; Zhou F; Bai M; Liu Y; Zhang L; Zhu Q; Bi Y; Ning G; Zhou L; Wang X
    Cell Death Dis; 2019 Jan; 10(2):66. PubMed ID: 30683850
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein acetylation on 2-isopropylmalate synthase from Thermus thermophilus HB27.
    Yoshida A; Yoshida M; Kuzuyama T; Nishiyama M; Kosono S
    Extremophiles; 2019 Jul; 23(4):377-388. PubMed ID: 30919057
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation.
    Lombard DB; Tishkoff DX; Bao J
    Handb Exp Pharmacol; 2011; 206():163-88. PubMed ID: 21879450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.