These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34597727)

  • 41. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection.
    DeMarino C; Schwab A; Pleet M; Mathiesen A; Friedman J; El-Hage N; Kashanchi F
    J Neuroimmune Pharmacol; 2017 Mar; 12(1):31-50. PubMed ID: 27372507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans.
    Feng C; Lori A; Waldman ID; Binder EB; Haroon E; Rilling JK
    Genes Brain Behav; 2015 Sep; 14(7):516-25. PubMed ID: 26178189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salivary vasopressin increases following intranasal oxytocin administration.
    Weisman O; Schneiderman I; Zagoory-Sharon O; Feldman R
    Peptides; 2013 Feb; 40():99-103. PubMed ID: 23246527
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intranasal oxytocin increases social grooming and food sharing in the common vampire bat Desmodus rotundus.
    Carter GG; Wilkinson GS
    Horm Behav; 2015 Sep; 75():150-3. PubMed ID: 26475061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of positive and negative human contacts and intranasal oxytocin on cerebrospinal fluid oxytocin.
    Rault JL
    Psychoneuroendocrinology; 2016 Jul; 69():60-6. PubMed ID: 27032064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Improving Effects of Peptides on Brain Malfunction and Intranasal Delivery of Those Derivatives to the Brain].
    Oka JI
    Yakugaku Zasshi; 2019; 139(5):783-791. PubMed ID: 31061348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges.
    Gidwani M; Singh AV
    Curr Pharm Biotechnol; 2014; 14(14):1201-12. PubMed ID: 24809717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intranasal treatment of central nervous system dysfunction in humans.
    Chapman CD; Frey WH; Craft S; Danielyan L; Hallschmid M; Schiöth HB; Benedict C
    Pharm Res; 2013 Oct; 30(10):2475-84. PubMed ID: 23135822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain.
    Patel MM; Patel BM
    CNS Drugs; 2017 Feb; 31(2):109-133. PubMed ID: 28101766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers.
    Li T; Chen X; Mascaro J; Haroon E; Rilling JK
    Horm Behav; 2017 Jul; 93():193-202. PubMed ID: 28161387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation.
    May JN; Golombek SK; Baues M; Dasgupta A; Drude N; Rix A; Rommel D; von Stillfried S; Appold L; Pola R; Pechar M; van Bloois L; Storm G; Kuehne AJC; Gremse F; Theek B; Kiessling F; Lammers T
    Theranostics; 2020; 10(4):1948-1959. PubMed ID: 32042346
    [No Abstract]   [Full Text] [Related]  

  • 52. Sex-Specific Effects of Stress on Oxytocin Neurons Correspond With Responses to Intranasal Oxytocin.
    Steinman MQ; Duque-Wilckens N; Greenberg GD; Hao R; Campi KL; Laredo SA; Laman-Maharg A; Manning CE; Doig IE; Lopez EM; Walch K; Bales KL; Trainor BC
    Biol Psychiatry; 2016 Sep; 80(5):406-14. PubMed ID: 26620251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoneurotherapeutics approach intended for direct nose to brain delivery.
    Md S; Mustafa G; Baboota S; Ali J
    Drug Dev Ind Pharm; 2015; 41(12):1922-34. PubMed ID: 26057769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug Delivery and Targeting to the Brain Through Nasal Route: Mechanisms, Applications and Challenges.
    Kashyap K; Shukla R
    Curr Drug Deliv; 2019; 16(10):887-901. PubMed ID: 31660815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanobiotechnology-based drug delivery in brain targeting.
    Dinda SC; Pattnaik G
    Curr Pharm Biotechnol; 2013; 14(15):1264-74. PubMed ID: 24910011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nano-enabled delivery systems across the blood-brain barrier.
    Hwang SR; Kim K
    Arch Pharm Res; 2014 Jan; 37(1):24-30. PubMed ID: 24170511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.
    Mistry A; Stolnik S; Illum L
    Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cligosiban, A Novel Brain-Penetrant, Selective Oxytocin Receptor Antagonist, Inhibits Ejaculatory Physiology in Rodents.
    Wayman C; Russell R; Tang K; Weibly L; Gaboardi S; Fisher L; Allers K; Jackson M; Hawcock T; Robinson N; Wilson L; Gupta J; Casey J; Gibson KR
    J Sex Med; 2018 Dec; 15(12):1698-1706. PubMed ID: 30527053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Getting into the brain: approaches to enhance brain drug delivery.
    Patel MM; Goyal BR; Bhadada SV; Bhatt JS; Amin AF
    CNS Drugs; 2009; 23(1):35-58. PubMed ID: 19062774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intranasal oxytocin enhances EEG mu rhythm desynchronization during execution and observation of social action: An exploratory study.
    Festante F; Ferrari PF; Thorpe SG; Buchanan RW; Fox NA
    Psychoneuroendocrinology; 2020 Jan; 111():104467. PubMed ID: 31630052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.