BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34598082)

  • 1. Ocular biomechanics due to ground blast reinforcement.
    Karimi A; Razaghi R; Girkin CA; Downs JC
    Comput Methods Programs Biomed; 2021 Nov; 211():106425. PubMed ID: 34598082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models.
    Karimi A; Razaghi R; Girkin CA; Downs JC
    Injury; 2022 Apr; 53(4):1401-1415. PubMed ID: 35144807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Injury; 2016 May; 47(5):1042-50. PubMed ID: 26861803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Evaluations of Ocular Injury Risk for Blast Loading.
    Notghi B; Bhardwaj R; Bailoor S; Thompson KA; Weaver AA; Stitzel JD; Nguyen TD
    J Biomech Eng; 2017 Aug; 139(8):. PubMed ID: 28617927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary blast lung injury prevalence and fatal injuries from explosions: insights from postmortem computed tomographic analysis of 121 improvised explosive device fatalities.
    Singleton JA; Gibb IE; Bull AM; Mahoney PF; Clasper JC
    J Trauma Acute Care Surg; 2013 Aug; 75(2 Suppl 2):S269-74. PubMed ID: 23883919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helmet chinstrap protective role in maxillofacial blast injury.
    Xu S; Zhang G; Guo JF; Tan YH
    Technol Health Care; 2021; 29(4):735-747. PubMed ID: 33522988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics of IED Blast Shock Tube Simulations for mTBI Research.
    Mediavilla Varas J; Philippens M; Meijer SR; van den Berg AC; Sibma PC; van Bree JL; de Vries DV
    Front Neurol; 2011; 2():58. PubMed ID: 21960984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.
    Goeller J; Wardlaw A; Treichler D; O'Bruba J; Weiss G
    J Neurotrauma; 2012 Jul; 29(10):1970-81. PubMed ID: 22489674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
    Ganpule S; Alai A; Plougonven E; Chandra N
    Biomech Model Mechanobiol; 2013 Jun; 12(3):511-31. PubMed ID: 22832705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of eye armor during blast loading.
    Bailoor S; Bhardwaj R; Nguyen TD
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1227-37. PubMed ID: 25828209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary blast injury to the eye and orbit: finite element modeling.
    Rossi T; Boccassini B; Esposito L; Clemente C; Iossa M; Placentino L; Bonora N
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8057-66. PubMed ID: 23111614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otologic manifestations from blast injuries among military personnel in Thailand.
    Klamkam P; Jaruchinda P; Nivatwongs S; Muninnobpamasa T; Harnchumpol P; Nirattisai S; Moungthong G
    Am J Otolaryngol; 2013; 34(4):287-91. PubMed ID: 23540888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Scale Modeling of Head Kinematics and Brain Tissue Response to Blast Exposure.
    Singh D; Cronin D
    Ann Biomed Eng; 2019 Sep; 47(9):1993-2004. PubMed ID: 30671753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High risk and low prevalence diseases: Blast injuries.
    Bukowski J; Nowadly CD; Schauer SG; Koyfman A; Long B
    Am J Emerg Med; 2023 Aug; 70():46-56. PubMed ID: 37207597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Technol Health Care; 2017; 25(2):285-297. PubMed ID: 27911345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to in vitro Models.
    Effgen GB; Hue CD; Vogel E; Panzer MB; Meaney DF; Bass CR; Morrison B
    Front Neurol; 2012; 3():23. PubMed ID: 22375134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast.
    Bauman RA; Ling G; Tong L; Januszkiewicz A; Agoston D; Delanerolle N; Kim Y; Ritzel D; Bell R; Ecklund J; Armonda R; Bandak F; Parks S
    J Neurotrauma; 2009 Jun; 26(6):841-60. PubMed ID: 19215189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocular war injuries of the Iraqi Insurgency,January-September 2004.
    Mader TH; Carroll RD; Slade CS; George RK; Ritchey JP; Neville SP
    Ophthalmology; 2006 Jan; 113(1):97-104. PubMed ID: 16290048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wartime spine injuries: understanding the improvised explosive device and biophysics of blast trauma.
    Kang DG; Lehman RA; Carragee EJ
    Spine J; 2012 Sep; 12(9):849-57. PubMed ID: 22197184
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.