These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34598104)

  • 1. Numerical study of the effect of liquid compressibility on acoustic droplet vaporization.
    Park S; Son G
    Ultrason Sonochem; 2021 Nov; 79():105769. PubMed ID: 34598104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of acoustic vaporization threshold of microdroplets.
    Park S; Son G
    Ultrason Sonochem; 2021 Mar; 71():105361. PubMed ID: 33160151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced, rational model to study acoustic vaporization dynamics of a bubble encapsulated within a nonlinearly elastic shell.
    Ghasemi M; Yu ACH; Sivaloganathan S
    Ultrason Sonochem; 2022 Feb; 83():105948. PubMed ID: 35151989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-high-speed dynamics of acoustic droplet vaporization in soft biomaterials: Effects of viscoelasticity, frequency, and bulk boiling point.
    Abeid BA; Fabiilli ML; Estrada JB; Aliabouzar M
    Ultrason Sonochem; 2024 Feb; 103():106754. PubMed ID: 38252981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid compressibility effects during the collapse of a single cavitating bubble.
    Fuster D; Dopazo C; Hauke G
    J Acoust Soc Am; 2011 Jan; 129(1):122-31. PubMed ID: 21302994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei.
    Hong S; Son G
    Ultrason Sonochem; 2022 Feb; 83():105932. PubMed ID: 35121570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic Droplet Vaporization in Acoustically Responsive Scaffolds: Effects of Frequency of Excitation, Volume Fraction and Threshold Determination Method.
    Aliabouzar M; Lu X; Kripfgans OD; Fowlkes JB; Fabiilli ML
    Ultrasound Med Biol; 2019 Dec; 45(12):3246-3260. PubMed ID: 31561948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble.
    Huang G; Zhang M; Han L; Ma X; Huang B
    Ultrason Sonochem; 2021 Apr; 72():105440. PubMed ID: 33421930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects on thermal lesion shape and size from bubble clouds produced by acoustic droplet vaporization.
    Xin Y; Zhang A; Xu LX; Fowlkes JB
    Biomed Eng Online; 2018 Oct; 17(1):163. PubMed ID: 30373677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable and transient bubble formation in acoustically-responsive scaffolds by acoustic droplet vaporization: theory and application in sequential release.
    Aliabouzar M; Kripfgans OD; Wang WY; Baker BM; Brian Fowlkes J; Fabiilli ML
    Ultrason Sonochem; 2021 Apr; 72():105430. PubMed ID: 33401189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-Temporal Cellular Bioeffects from Acoustic Droplet Vaporization.
    Fan CH; Lin YT; Ho YJ; Yeh CK
    Theranostics; 2018; 8(20):5731-5743. PubMed ID: 30555577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.
    Lacour T; Guédra M; Valier-Brasier T; Coulouvrat F
    J Acoust Soc Am; 2018 Jan; 143(1):23. PubMed ID: 29390781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.
    Buogo S; Cannelli GB
    J Acoust Soc Am; 2002 Jun; 111(6):2594-600. PubMed ID: 12083190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment.
    Xin Y; Zhang A; Xu LX; Brian Fowlkes J
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28654938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Acoustic and Dynamic Characteristics of Phase-Change Droplets.
    Fan CH; Kao WF; Kang ST; Ho YJ; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1051-1061. PubMed ID: 33079650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new pressure formulation for gas-compressibility dampening in bubble dynamics models.
    Gadi Man YA; Trujillo FJ
    Ultrason Sonochem; 2016 Sep; 32():247-257. PubMed ID: 27150768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting initial nucleation events occurred in a metastable nanodroplet during acoustic droplet vaporization.
    Qin D; Zou Q; Lei S; Wang W; Li Z
    Ultrason Sonochem; 2021 Jul; 75():105608. PubMed ID: 34119737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.