These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 34598243)

  • 1. Pixel MTF response effect on non-null interferometry.
    Tangari Larrategui M; Zhang Y; Brown TG; Ellis JD
    Opt Lett; 2021 Oct; 46(19):4960-4963. PubMed ID: 34598243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.
    Vedantham S; Shrestha S; Karellas A; Shi L; Gounis MJ; Bellazzini R; Spandre G; Brez A; Minuti M
    Med Phys; 2016 May; 43(5):2118. PubMed ID: 27147324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation transfer function measurement of sparse-array sensors using a self-calibrating fringe pattern.
    Greivenkamp JE; Lowman AE
    Appl Opt; 1994 Aug; 33(22):5029-36. PubMed ID: 20935883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-frame linear regressive filter for the measurement of infrared pixel spatial response and MTF from sparse data.
    Huard E; Derelle S; Jaeck J; Nghiem J; Haïdar R; Primot J
    Opt Express; 2018 Mar; 26(5):5200-5211. PubMed ID: 29529726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MTF behavior of compressed sensing MR spectroscopic imaging.
    Heikal AA; Wachowicz K; Fallone BG
    Med Phys; 2013 May; 40(5):052302. PubMed ID: 23635289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Performance 2.5 μm Charge Domain Global Shutter Pixel and Near Infrared Enhancement with Light Pipe Technology.
    Mizuno I; Tsutsui M; Yokoyama T; Hirata T; Nishi Y; Veinger D; Birman A; Lahav A
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed, sub-Nyquist interferometry.
    Wu T; Valera JD; Moore AJ
    Opt Express; 2011 May; 19(11):10111-23. PubMed ID: 21643269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient modal analysis using compressive optical interferometry.
    Mardani D; Abouraddy AF; Atia GK
    Opt Express; 2015 Nov; 23(22):28449-58. PubMed ID: 26561116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.
    Zhang T; Gao F; Muhamedsalih H; Lou S; Martin H; Jiang X
    Appl Opt; 2018 Mar; 57(9):2227-2234. PubMed ID: 29604017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-target CW interferometric acoustic measurements on a single optical beam.
    Zhang Y; Bandutunga CP; Gray MB; Chow JH
    Opt Express; 2019 Jun; 27(13):18477-18483. PubMed ID: 31252790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the foveal cone spacing by ocular speckle interferometry: limiting factors and acuity predictions.
    Marcos S; Navarro R
    J Opt Soc Am A Opt Image Sci Vis; 1997 Apr; 14(4):731-40. PubMed ID: 9088086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable phase-extraction formulae for simultaneous shape measurement of multiple surfaces with wavelength-shifting interferometry.
    Hibino K; Hanayama R; Burke J; Oreb B
    Opt Express; 2004 Nov; 12(23):5579-94. PubMed ID: 19488192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image.
    Buhr E; Günther-Kohfahl S; Neitzel U
    Med Phys; 2003 Sep; 30(9):2323-31. PubMed ID: 14528954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory, method, and test tools for determination of 3D MTF characteristics in cone-beam CT.
    Wu P; Boone JM; Hernandez AM; Mahesh M; Siewerdsen JH
    Med Phys; 2021 Jun; 48(6):2772-2789. PubMed ID: 33660261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Shot Imaging of Two-Wavelength Spatial Phase-Shifting Interferometry.
    Jeon JW; Joo KN
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous 2-step phase-shifting interferometry with a full-band interferometric signal being recovered.
    Wang Y; Cao S; Li B; Zhong L; Lu X
    Opt Lett; 2018 Oct; 43(19):4807-4810. PubMed ID: 30272745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of High Resolution X-Ray detectors with Conventional FPDs using Experimental MTFs and Apodized Aperture Pixel Design for Reduced Aliasing.
    Shankar A; Russ M; Vijayan S; Bednarek DR; Rudin S
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10132():. PubMed ID: 28626289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple wavelength heterodyne array interferometry.
    McMackin L; Voelz D; Fetrow M
    Opt Express; 1997 Nov; 1(11):332-7. PubMed ID: 19377553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate MTF measurement in digital radiography using noise response.
    Kuhls-Gilcrist A; Jain A; Bednarek DR; Hoffmann KR; Rudin S
    Med Phys; 2010 Feb; 37(2):724-35. PubMed ID: 20229882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple height-transfer interferometric technique.
    Yu H; Aleksoff C; Ni J
    Opt Express; 2011 Aug; 19(17):16365-74. PubMed ID: 21935000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.