These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34598458)
1. The Kuramoto model on a sphere: Explaining its low-dimensional dynamics with group theory and hyperbolic geometry. Lipton M; Mirollo R; Strogatz SH Chaos; 2021 Sep; 31(9):093113. PubMed ID: 34598458 [TBL] [Abstract][Full Text] [Related]
2. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach. Barioni AED; de Aguiar MAM Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619 [TBL] [Abstract][Full Text] [Related]
4. Collective mode reductions for populations of coupled noisy oscillators. Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615 [TBL] [Abstract][Full Text] [Related]
5. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
6. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model. Mirollo RE Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053 [TBL] [Abstract][Full Text] [Related]
7. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions. Campa A Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926 [TBL] [Abstract][Full Text] [Related]
8. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
9. Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere. Jaćimović V; Crnkić A Chaos; 2018 Aug; 28(8):083105. PubMed ID: 30180646 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability. Zou W; Wang J Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Banerjee A; Acharyya M Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304 [TBL] [Abstract][Full Text] [Related]
12. Global density equations for interacting particle systems with stochastic resetting: From overdamped Brownian motion to phase synchronization. Bressloff PC Chaos; 2024 Apr; 34(4):. PubMed ID: 38558049 [TBL] [Abstract][Full Text] [Related]
13. Exact results for the Kuramoto model with a bimodal frequency distribution. Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
15. Low-dimensional behavior of Kuramoto model with inertia in complex networks. Ji P; Peron TK; Rodrigues FA; Kurths J Sci Rep; 2014 May; 4():4783. PubMed ID: 24786680 [TBL] [Abstract][Full Text] [Related]
17. Hierarchy of Exact Low-Dimensional Reductions for Populations of Coupled Oscillators. Cestnik R; Pikovsky A Phys Rev Lett; 2022 Feb; 128(5):054101. PubMed ID: 35179937 [TBL] [Abstract][Full Text] [Related]
18. Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories. Cestnik R; Pikovsky A Chaos; 2022 Nov; 32(11):113126. PubMed ID: 36456354 [TBL] [Abstract][Full Text] [Related]
19. Solvable Dynamics of Coupled High-Dimensional Generalized Limit-Cycle Oscillators. Zou W; He S; Senthilkumar DV; Kurths J Phys Rev Lett; 2023 Mar; 130(10):107202. PubMed ID: 36962012 [TBL] [Abstract][Full Text] [Related]
20. Conformists and contrarians in a Kuramoto model with identical natural frequencies. Hong H; Strogatz SH Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]