These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34598476)

  • 1. Phase transition in piecewise linear random maps in the interval.
    Maldonado C; Pérez Otero RA
    Chaos; 2021 Sep; 31(9):093112. PubMed ID: 34598476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to anomalous dynamics in a simple random map.
    Yan J; Majumdar M; Ruffo S; Sato Y; Beck C; Klages R
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38377287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-locking for maps of a torus: a computer assisted study.
    Galkin OG
    Chaos; 1993 Jan; 3(1):73-82. PubMed ID: 12780016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of the natural approximations of piecewise monotone interval maps.
    Haydn N
    Chaos; 2004 Jun; 14(2):224-33. PubMed ID: 15189050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust chaos in 3-D piecewise linear maps.
    Patra M; Banerjee S
    Chaos; 2018 Dec; 28(12):123101. PubMed ID: 30599530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological and dynamical complexity of random neural networks.
    Wainrib G; Touboul J
    Phys Rev Lett; 2013 Mar; 110(11):118101. PubMed ID: 25166580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.
    Mahata S; Das S; Gupte N
    Phys Rev E; 2016 Jun; 93(6):062212. PubMed ID: 27415260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyapunov exponents in unstable systems.
    Colonna M; Bonasera A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):444-8. PubMed ID: 11969780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid phase transition into an absorbing state: Percolation and avalanches.
    Lee D; Choi S; Stippinger M; Kertész J; Kahng B
    Phys Rev E; 2016 Apr; 93():042109. PubMed ID: 27176256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach.
    Anteneodo C; Vallejos RO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016210. PubMed ID: 11800771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry of Lyapunov exponents in bifurcation structures of one-dimensional maps.
    Shimada Y; Takagi E; Ikeguchi T
    Chaos; 2016 Dec; 26(12):123119. PubMed ID: 28039982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of Lyapunov exponents for products of correlated random matrices.
    Yamada H; Okabe T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026203. PubMed ID: 11308554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decay of the distance autocorrelation and Lyapunov exponents.
    Mendes CFO; da Silva RM; Beims MW
    Phys Rev E; 2019 Jun; 99(6-1):062206. PubMed ID: 31330581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling.
    Batista AM; Pinto SE; Viana RL; Lopes SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056209. PubMed ID: 12059682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally invariant measure of chaotic attractors and the conditionally invariant measure of embedded chaotic repellers.
    Buljan H; Paar V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036218. PubMed ID: 11909223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation.
    Zhusubaliyev ZT; Mosekilde E; Maity S; Mohanan S; Banerjee S
    Chaos; 2006 Jun; 16(2):023122. PubMed ID: 16822025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic Griffiths Phase with Anomalous Lyapunov Spectra in Coupled Map Networks.
    Shinoda K; Kaneko K
    Phys Rev Lett; 2016 Dec; 117(25):254101. PubMed ID: 28036202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marginal singularities, almost invariant sets, and small perturbations of chaotic dynamical systems.
    Blank ML
    Chaos; 1991 Oct; 1(3):347-356. PubMed ID: 12779932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Existence of multiple noise-induced transitions in Lasota-Mackey maps.
    Chihara T; Sato Y; Nisoli I; Galatolo S
    Chaos; 2022 Jan; 32(1):013117. PubMed ID: 35105119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.